92 research outputs found

    An Intelligent Routing Protocol Based on DYMO for MANET

    Get PDF
    in this paper, intelligent routing protocols for mobile ad-hoc networks (MANET) will be proposed .Depending on the concepts of fuzzy and neural networks. The goal is to get good quality service by finding the most convenient data transfer paths, therefore a Fuzzy-based, Neural-Fuzzy based and Energy aware are three approaches have been proposed to enhance Dynamic Manet On-demand (DYMO),All approaches were implemented in ns-2 simulator and compared with original protocol in terms of performance metrics, which showed that there was an improvement in route efficiency

    Room temperature thermally evaporated thin Au film on Si suitable for application of thiol self-assembled monolayers in MEMS/NEMS sensors

    Get PDF
    Gold is a standard surface for attachment of thiol-based self-assembled monolayers (SAMs). To achieve uniform defect free SAM coatings, which are essential for bio/chemical sensing applications, the gold surface must have low roughness, and be highly orientated. These requirements are normally achieved by either heating during Au deposition or post deposition Au surface annealing. This paper shows that room temperature deposited gold, can afford equivalent gold surfaces, if the gold deposition parameters are carefully controlled. This observation is an important result as heating (or annealing) of the deposited gold can have a detrimental effect on the mechanical properties of the silicon on which the gold is deposited used in microsensors. The paper presents the investigation of the morphology and crystalline structure of Au film prepared by thermal evaporation at room temperature on silicon. The effect of gold deposition rate is studied, and it is shown that by increasing the deposition rate from 0.02 nm s-1 to 0.14 nm s-1 the gold surface RMS roughness decreases, whereas the grain size of the deposited gold is seen to follow a step function decreasing suddenly between 0.06 and 0.10 nm s-1. The XRD intensity of the preferentially [111] orientated gold crystallites is also seen to increase as the deposition rate increases up to a deposition rate of 0.14 nm s-1. Formation and characterization of 1-dodecanethiol on these Au coated samples is also studied using contact angle. It is shown that by increasing the Au deposition rate the contact angle hysteresis (CAH) decreases until it plateaus, for a deposition rate greater than 0.14 nm s-1, where the CAH is smaller than 9 degrees which is an indication of homogeneous SAM formation, on a smooth surface

    Coupled Growth and Division of Model Protocell Membranes

    Get PDF
    The generation of synthetic forms of cellular life requires solutions to the problem of how biological processes such as cyclic growth and division could emerge from purely physical and chemical systems. Small unilamellar fatty acid vesicles grow when fed with fatty acid micelles and can be forced to divide by extrusion, but this artificial division process results in significant loss of protocell contents during each division cycle. Here we describe a simple and efficient pathway for model protocell membrane growth and division. The growth of large multilamellar fatty acid vesicles fed with fatty acid micelles, in a solution where solute permeation across the membranes is slow, results in the transformation of initially spherical vesicles into long thread-like vesicles, a process driven by the transient imbalance between surface area and volume growth. Modest shear forces are then sufficient to cause the thread-like vesicles to divide into multiple daughter vesicles without loss of internal contents. In an environment of gentle shear, protocell growth and division are thus coupled processes. We show that model protocells can proceed through multiple cycles of reproduction. Encapsulated RNA molecules, representing a primitive genome, are distributed to the daughter vesicles. Our observations bring us closer to the laboratory synthesis of a complete protocell consisting of a self-replicating genome and a self-replicating membrane compartment. In addition, the robustness and simplicity of this pathway suggests that similar processes might have occurred under the prebiotic conditions of the early Earth.Exobiology Program (U.S.) (Grant EXB02- 0031-0018)United States. National Aeronautics and Space Administration (Exobiology Program) (Grant EXB02-0031-0018)Howard Hughes Medical Institute (Investigator

    The effect of Mg-to-Ca ratio ratios in artificial seawater, at different ionic products, upon the induction time, and the mineralogy of calcium carbonate: a laboratory study

    Get PDF
    The effects of the Mg2+ ion concentration and the ionic products of carbonate upon the induction time for the onset of precipitation and the different mineralogies of calcium carbonates were studied. It was shown that Mg2+ ions delay the spontaneous precipitation of calcium carbonate from supersaturated solutions (e.g. seawater) with respect to calcium carbonate mineral to such an extent that only biogenic removal of skeletal calcium carbonate is possible from the open ocean. Low concentrations of magnesium ions in solution favor calcite formation while aragonite is formed at high magnesium concentrations. The mole% of MgCO3 in magnesian calcite increases with the increase of (Mg2+) in solution and with the increase of (CO32−) in the presence of (Mg2+) in solution. Therefore, one would expect that high Mg-calcite is formed in wormed coastal regions, where high temperature and or the increase of photosynthesis activities tend to expel CO2 and increase supersaturation, and low-magnesian calcite is favored in meteoric-vadose environment where low concentration of magnesium ions or in burial environment where respiration and oxidation is high and decrease supersaturation
    • …
    corecore