281 research outputs found

    Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory

    Get PDF
    Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.This research work was funded by a Core Award from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). Also supported by a Wellcome Trust Senior Investigator Award (104631/Z/14/Z) awarded to TWR. CE was supported by the Swiss National Science Foundation (PA00P1_134135) and the Vienna Science and Technology Fund (WWTF VRG13-007)

    Cognitive Behavioral Therapy versus Short Psychodynamic Supportive Psychotherapy in the outpatient treatment of depression: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research has shown that Short Psychodynamic Supportive Psychotherapy (SPSP) is an effective alternative to pharmacotherapy and combined treatment (SPSP and pharmacotherapy) in the treatment of depressed outpatients. The question remains, however, how Short Psychodynamic Supportive Psychotherapy compares with other established psychotherapy methods. The present study compares Short Psychodynamic Supportive Psychotherapy to the evidence-based Cognitive Behavioral Therapy in terms of acceptability, feasibility, and efficacy in the outpatient treatment of depression. Moreover, this study aims to identify clinical predictors that can distinguish patients who may benefit from either of these treatments in particular. This article outlines the study protocol. The results of the study, which is being currently carried out, will be presented as soon as they are available.</p> <p>Methods/Design</p> <p>Adult outpatients with a main diagnosis of major depressive disorder or depressive disorder not otherwise specified according to DSM-IV criteria and mild to severe depressive symptoms (<it>Hamilton Depression Rating Scale </it>score ≥ 14) are randomly allocated to Short Psychodynamic Supportive Psychotherapy or Cognitive Behavioral Therapy. Both treatments are individual psychotherapies consisting of 16 sessions within 22 weeks. Assessments take place at baseline (week 0), during the treatment period (week 5 and 10) and at treatment termination (week 22). In addition, a follow-up assessment takes place one year after treatment start (week 52). Primary outcome measures are the number of patients refusing treatment (acceptability); the number of patients terminating treatment prematurely (feasibility); and the severity of depressive symptoms (efficacy) according to an independent rater, the clinician and the patient. Secondary outcome measures include general psychopathology, general psychotherapy outcome, pain, health-related quality of life, and cost-effectiveness. Clinical predictors of treatment outcome include demographic variables, psychiatric symptoms, cognitive and psychological patient characteristics and the quality of the therapeutic relationship.</p> <p>Discussion</p> <p>This study evaluates Short Psychodynamic Supportive Psychotherapy as a treatment for depressed outpatients by comparing it to the established evidence-based treatment Cognitive Behavioral Therapy. Specific strengths of this study include its strong external validity and the clinical relevance of its research aims. Limitations of the study are discussed.</p> <p>Trial registration</p> <p>Current Controlled Trails ISRCTN31263312</p

    Crystal structure of nucleotide-free dynamin

    Get PDF
    Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function

    Role of Dopamine D2 Receptors in Human Reinforcement Learning

    Get PDF
    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, while loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically-determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.Neuropsychopharmacology accepted article peview online, 09 April 2014; doi:10.1038/npp.2014.84

    Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects.

    Get PDF
    To identify the genomic regions that confer risk and protection for major depressive disorder (MDD) in humans, large-scale studies are needed. Such studies should collect multiple phenotypes, DNA, and ideally, biological material that allows gene expression analysis, transcriptomic, proteomic, and metabolomic studies. In this paper, we briefly review linkage studies of MDD and then describe the large-scale nationwide biological sample collection in Dutch twin families from the Netherlands Twin Register (NTR) and in participants in the Netherlands Study of Depression and Anxiety (NESDA). Within these studies, 1862 participants with a diagnosis of MDD and 1857 controls at low liability for MDD have been selected for genome-wide genotyping by the US Foundation for the National Institutes of Health Genetic Association Information Network. Stage 1 genome-wide association results are scheduled to be accessible before the end of 2007. Genome-wide association results are open-access and can be viewed at the dbGAP web portal (http://www.ncbi.nlm.nih.gov). Approved users can download the genotype and phenotype data, which have been made available as of 9 October 2007

    Standardisation framework for the Maudsley staging method for treatment resistance in depression

    Get PDF
    Background: Treatment-resistant depression (TRD) is a serious and relatively common clinical condition. Lack of consensus on defining and staging TRD remains one of the main barriers to understanding TRD and approaches to intervention. The Maudsley Staging Method (MSM) is the first multidimensional model developed to define and stage treatment-resistance in “unipolar depression”. The model is being used increasingly in treatment and epidemiological studies of TRD and has the potential to support consensus. Yet, standardised methods for rating the MSM have not been described adequately. The aim of this report is to present standardised approaches for rating or completing the MSM. Method: Based on the initial development of the MSM and a narrative review of the literature, the developers of the MSM provide explicit guidance on how the three dimensions of the MSM–treatment failure, severity of depressive episode and duration of depressive episode– may be rated. Result: The core dimension of the MSM, treatment failure, may be assessed using the Maudsley Treatment Inventory (MTI), a new method developed for the purposes of completing the MSM. The MTI consists of a relatively comprehensive list of medications with options for rating doses and provisions treatment for multiple episodes. The second dimension, severity of symptoms, may be assessed using simple instruments such as the Clinical Global Impression, the Psychiatric Status Rating or checklist from a standard diagnostic checklist. The standardisation also provides a simple rating scale for scoring the third dimension, duration of depressive episode. Conclusion: The approaches provided should have clinical and research utility in staging TRD. However, in proposing this model, we are fully cognisant that until the pathophysiology of depression is better understood, staging methods can only be tentative approximations. Future developments should attempt to incorporate other biological/ pathophysiological dimensions for staging

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    Engineered Models of Metastasis with Application to Study Cancer Biomechanics

    Get PDF
    Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types
    • …
    corecore