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Abstract

Objective: Characteristics of difficult-to-treat depression (DTD), including infrequent symptom remission and poor 
durability of benefit, compel reconsideration of the outcome metrics historically used to gauge the effectiveness of 
antidepressant interventions.

Methods: Self-report and clinician assessments of depression symptom severity were obtained regularly over a 2-year 
period in a difficult-to-treat depression registry sample receiving treatment as usual (TAU), with or without vagus nerve 
stimulation (VNS). Alternative outcome metrics for characterizing symptom change were compared in effect size and 
discriminating power in distinguishing the vagus nerve stimulation + treatment as usual and treatment as usual treat-
ment groups. We expected metrics based on remission status to produce weaker between-group separation than those 
based on the classifications of partial response or response and metrics that integrate information over time to produce 
greater separation than those based on single endpoint assessment.

Results: Metrics based on remission status had smaller effect size and poorer discrimination in separating the treat-
ment groups than metrics based on partial response or response classifications. Metrics that integrated information over 
the 2-year observation period had stronger performance characteristics than those based on symptom scores at single 
endpoint assessment. For both the clinician-rated and self-report depression ratings, the metrics with the strongest 
performance characteristics were the median percentage change in symptom scores over the observation period and 
the proportion of the observation period in partial response or better.

Conclusion: In difficult-to-treat depression, integrative symptom severity-based and time-based measures are sensitive 
and informative outcomes for assessing between-group treatment effects, while metrics based on remission status are 
not.
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Introduction

Many depressed patients are well treated with currently 
available interventions. However, a substantial proportion, 
perhaps 25–35%, do not achieve or sustain remission after 
multiple treatment attempts (Jaffe et al., 2019; Rush et al., 
2006c). Patients with difficult-to-treat depression (DTD) 
present diagnostic, clinical management and intervention 
research challenges (McAllister-Williams et al., 2020; 
Rush et al., 2019, 2022). Nonetheless, to provide optimal 
care for those who may improve but not achieve lasting 
remission, it is important to identify interventions that pro-
duce clinically meaningful symptom control and improve-
ment in daily function and quality of life even when 
remission is elusive.

Patients with DTD often have general medical and psy-
chiatric comorbidities, and substantial histories of prior 
failed treatment trials, which frequently disqualify them 
from acute phase trials of antidepressant treatments con-
ducted for regulatory approval. These patients are unlikely 
to meet traditional thresholds that define positive clinical 
outcome at trial termination (e.g. remission). Alternative 
metrics that do not rely on single endpoint (SEP) assess-
ment may be more sensitive to symptomatic improvement 
in these patients but have not been validated. Recently, new 
classes of pharmacological and neurostimulatory interven-
tions are being developed as potential treatments of DTD 
(Aaronson et al., 2017; Cole et al., 2022; McIntyre et al., 
2021; Roseman et al., 2017; Sackeim et al., 2020; Wu et al., 
2021). Thus, clinical need and the possibility of novel inter-
ventions prompt consideration of a key clinical research 
challenge: how best to assess clinical outcomes in DTD, 
and, especially, how best to compare outcomes between 
two or more treatments (e.g. control vs intervention) when 
sustained remission is rare and symptom severity may fluc-
tuate over time (McAllister-Williams et al., 2020; Rush 
et al., 2022).

In the previous paper in this series (Sackeim et al., 2023), 
we computed traditional and novel metrics for characterizing 
symptomatic improvement over a 2-year observation period 
in a registry sample of patients with DTD receiving treatment 
as usual (TAU) with and without adjunctive vagus nerve 
stimulation (VNS + TAU) (Aaronson et al., 2017). Using the 
clinician-rated Montgomery Åsberg Depression Rating Scale 
(MADRS) (Montgomery and Åsberg, 1979) and the 16-item 
Quick Inventory of Depressive Symptoms-Self Report 
(QIDS-SR) (Rush et al., 2003, 2006a), we calculated tradi-
tional SEP metrics based on symptom scores at the end of the 
observation period and integrative (INT) metrics that aver-
aged or aggregated scores over the entire observation period. 

In this first study, the metrics were compared in their sensitiv-
ity to change in endpoint self-report ratings of quality-of-life 
(QoL).

This second study compares the same outcome metrics 
in their sensitivity to treatment group effects, a distinct 
issue of key importance for intervention research. We con-
trasted the metrics in their sensitivity to treatment condi-
tions administered over a 2-year period, specifically 
whether patients received VNS + TAU vs TAU. Differential 
sensitivity to treatment effects may inform the selection of 
primary and secondary outcome measures in future trials in 
DTD. This study was predicated on the previously reported 
finding from this registry that the VNS + TAU group had 
superior symptomatic improvement compared with the 
TAU group across multiple outcome measures (Aaronson 
et al., 2017). The objective in this study was to compare the 
sensitivity of the varying metrics for quantifying sympto-
matic improvement in revealing this treatment condition 
effect. Specifically, we anticipated that, among dichoto-
mous outcome classifications, remission status would have 
the weakest performance characteristics in separating the 
treatment conditions because remission would be uncom-
mon in these patients. We anticipated that integrating mul-
tiple assessments obtained over time would be more reliable 
indicators of improvement with stronger performance char-
acteristics in distinguishing the treatment groups than the 
comparable traditional SEP metrics.

Methods

Sample

The registry (ClinicalTrials.gov Identifier: NCT00320372) 
participants were 18 years and older and in a current major 
depressive episode (MDE) by Mini International 
Neuropsychiatric Interview (Sheehan et al., 1998) and 
DSM-IV-TR criteria (First and Pincus, 2002). The current 
MDE (unipolar or bipolar) was at least 2 years in duration, 
or the participant had a history of least 3 MDEs, including 
the current episode. Participants also demonstrated lack of 
response to 4 or more adequately delivered antidepressant 
pharmacological treatments, or nonresponse to a course of 
electroconvulsive therapy (ECT) or evidence-based psy-
chotherapy. Treatments could be administered as mono-
therapies or concurrently. Inclusion also required a baseline 
Clinical Global Impression Severity (Guy, 1976) score of at 
least 4 and no past or current psychotic disorder, rapid 
cycling bipolar disorder or previous use of VNS.

Registry study participation was approved by an institu-
tional review board (Western IRB, Olympia, WA; Approval 
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Number: 20051737) and written informed consent was 
obtained from all participants. Details regarding the treat-
ment of registry participants are provided elsewhere 
(Aaronson et al., 2017). The intent was to follow the natural 
course of DTD in the TAU group, and any psychopharma-
cologic, neurostimulation or psychotherapeutic interven-
tion could be administered over the 5-year study period to 
any patient in either treatment group. VNS was adminis-
tered only to the VNS + TAU group and throughout the 
observation period.

This report employed the same sample previously used 
to compare the metrics in their sensitivity to QoL outcomes 
(Sackeim et al., 2023) where a CONSORT diagram is pre-
sented. We excluded 200 of the 606 patients who enrolled 
in the registry. Participants were excluded who dropped out 
of the study before the 12-month follow-up (n = 5), who had 
insufficient symptom severity at baseline on the MADRS 
and/or QIDS-SR (n = 54) or who did not complete study 
assessments on or after the 12-month follow-up visit 
(n = 141). The final sample of 406 participants included 234 
participants treated with VNS + TAU and 172 participants 
who received TAU.

Symptom assessments

The MADRS and QIDS-SR were administered at baseline 
(visit prior to surgical implantation of VNS), at 3, 6, 9, 12, 
18 and 24 months post-baseline, and every 6 months there-
after until study termination at 60 months. The observation 
period used here was limited to the first 24 months post-
baseline, since there was considerable missing data after 
24 months and starting at 12 months post-baseline, assess-
ments were conducted at only 6-month intervals. The 
QIDS-SR was completed on-site at each visit. After each 
on-site visit, the site notified central raters to initiate a 
patient telephone follow-up. The central raters were trained 
clinicians who conducted the MADRS assessments 
(Aaronson et al., 2017).

Outcome metrics

The SEP metrics were based on the last observed MADRS 
or QIDS-SR total score. These metrics, computed for both 
instruments, included: (1) the total symptom severity score 
at the end of the observation period; (2) the percentage 
change in this score relative to baseline ([pre-post]/
pre) × 100; (3) partial response status, defined as a percent-
age change ⩾ 35%; (4) response status, defined as a per-
centage change ⩾ 50% and (5) remission status, defined as 
an endpoint score ⩽ 9 for the MADRS and ⩽ 5 for the 
QIDS-SR.

The integrated (INT) metrics incorporated all available 
scores during the observation period (post-baseline 3-, 6-, 
9-, 12-, 18-, and 24-month visits). These metrics were 
divided into severity-based and time-based measures. Each 

INT metric corresponded to a specific SEP metric, but now 
averaging (severity-based) or aggregating (time-based) 
scores over time. For each patient, the INT severity-based 
metrics were (1) the median of total scores (either the 
MADRS or the QIDS-SR) over the six possible assess-
ments during the post-baseline observation period and (2) 
the median percentage change from baseline in total 
MADRS or QIDS-SR scores as computed at each post-
baseline visit. The INT time-based metrics were the propor-
tion of the observation period that the participant met the 
threshold for (3) partial response, (4) response and (5) 
remission for each scale.

Statistical analyses

A pre-specified statistical plan detailed the statistical analy-
ses performed in this and the previous study (Sackeim 
et al., 2023). The Shapiro–Wilk test was used to screen for 
departures from normality in continuous demographic and 
clinical measures and metric scores. The distributions of 
number of previous MDEs, hospitalizations in the last 
5 years, and lifetime suicide attempts were skewed due to 
high outlying values. These variables were capped with a 
maximal score of 10. The treatment groups (VNS + TAU 
vs TAU) were compared in demographic and clinical char-
acteristics using the Wilcoxon rank-sum test for continuous 
measures and Fisher’s exact test for categorical variables.

Effect size (ES) was calculated for each metric, reflect-
ing the magnitude of the standardized difference between 
the treatment conditions in mean metric scores. For all met-
rics other than the SEP binary classifications (partial 
response, response and remission), ES was calculated as 
the difference between the means of the two groups relative 

to a pooled standard deviation, Cohen’s 
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For the SEP binary classifications, following Cohen’s rec-
ommendations (Cohen, 1988), ES was calculated for the 
difference between the proportions of the two treatment 
groups, Cohen’s h arsin P arsin P= √ − √2 21 2. The 95% con-
fidence interval is also reported for each ES.

ES provided a standardized measure to contrast the met-
rics in the magnitude of the difference between the two 
treatment groups in mean scores. However, ES values can 
be influenced by unrepresentative extreme scores that dis-
tort between-group differences. A related question concerns 
the extent to which metrics were useful in identifying 
whether participants were treated with VNS + TAU vs 
TAU, i.e. their accuracy in making this discrimination, 
which is less influenced by extreme scores. Receiver oper-
ating characteristic curves were generated for each metric 
in detecting the treatment conditions and standard signal 
detection methods applied to quantify overall performance 
(area under the curve, AUC), sensitivity (accuracy in 
detecting treatment with VNS + TAU) and specificity 
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(accuracy in detecting treatment with TAU) (Green and 
Swets, 1966; McNicol, 2004; Stanislaw and Todorov, 
1999). AUC provides an index of the overall performance 
in distinguishing the groups, where values of 0.5 indicate 
chance performance and values of 1.0 correspond to error-
less detection. AUC values of 0.556, 0.639 and 0.714 cor-
respond to small (d = 0.2), medium (d = 0.5) and large 
(d = 0.8) ES (Rice and Harris, 2005).

The Wilcoxon non-parametric matched-paired signed 
rank tests were used to test whether specific metric group-
ings differed in ES and AUC values. In this study, the 10 
metrics based on the MADRS were compared in ES and 
AUC values to the 10 respective QIDS-SR metrics, and the 
10 metrics based on SEP assessment were compared with 
their respective INT metrics.

Assignment to treatment group was not random, and the 
treatment groups differed in several clinical features at 
baseline. The propensity score method (Rosenbaum and 
Rubin, 1983) was used to determine whether the differ-
ences observed among the metrics in distinguishing the 
treatment groups were due to associations with imbalanced 
baseline prognostic features. Propensity scores, derived for 
each participant, reflected the probability of receiving 
VNS + TAU or TAU as a function of the baseline variables 
that distinguished the groups (Aaronson et al., 2017). These 
scores were divided into quintiles. A simultaneous regres-
sion analysis was performed on each metric score with 
treatment group (VNS + TAU vs TAU) and propensity 
score quintile as independent variables (Cohen et al., 2003). 
The extent of each metric’s separation of the treatment 
groups after propensity score adjustment was assessed with 
the standardized regression coefficient (ß) which quantified 
the strength of the relationship between treatment condition 
and the metric score after each variable has been standard-
ized. This coefficient is ‘unitless’ and allows comparison 
across metrics with different scaling (Newman and 
Browner, 1991). The metrics were also compared in the 
amount of variance in the outcome metric accounted for by 
treatment condition (R2). This use of regression methods to 
control for propensity scores provides standardized esti-
mates of treatment effects robust across outcome models 
(Vansteelandt and Daniel, 2014).

Results

Sample characteristics

The VNS + TAU and TAU treatment groups included a 
large proportion of patients with severe, chronic and highly 
treatment-resistant major depression that did not differ in 
the age or gender (Table 1). The treatment groups differed 
in several ways. Baseline MADRS and QIDS-SR total 
scores, and number of lifetime MDEs, psychiatric hospi-
talizations in the last 5 years, and failed courses of MDE 
treatment were greater in the VNS + TAU group. This 

group also included more patients with a diagnosis of bipo-
lar disorder and a history of treatment with ECT. These dif-
ferences were observed prior to propensity adjustment. 
After covariate adjustment for the propensity score quin-
tiles, the treatment groups did not differ in any demographic 
or baseline clinical features listed in Table 1 (data not 
shown).

The MADRS and QIDS-SR were completed on average 
more than five out of six possible assessment occasions and 
the sample averaged more than 22 months of follow-up. 
The treatment groups did not differ in the number of post-
baseline assessments with either the MADRS or QIDS-SR 
(Supplementary Table 1).

Metric performance: ES and discrimination 
between treatment groups

The results were consistent across the ES and AUC meas-
ures. These findings are discussed together. Figure 1 dis-
plays ES and AUC values in separating the treatment 
groups for all metrics. There was a nearly six-fold range 
among the metrics in ES (range = 0.11–0.63, median = 0.43) 
(Supplementary Table 2). AUC ranged from 0.53 to 0.68 
(median = 0.60) (Supplementary Table 3).

ES and AUC values were higher for metrics based on 
MADRS than QIDS-SR scores (Figure 1). The ES for the 
10 MADRS metrics ranged from 0.24 to 0.63 (median = 0.46) 
and AUC ranged from 0.56 to 0.67 (median = 0.61). For the 
QIDS-SR, ES ranged from 0.11 to 0.63 (median = 0.33) and 
AUC ranged from 0.52 to 0.68 (median = 0.58). The paired 
comparisons of MADRS and QIDS-SR metrics yielded sig-
nificant differences in ES (p < 0.004) and AUC (p = 0.01) 
favoring the clinician rating.

The nearly six-fold range in ES across the 20 metrics 
indicated that the metrics differed markedly in the degree 
to which they distinguished the treatment groups (Supple-
mentary Table 2 and Figure 1). Metrics based on remission 
status had lower ES and AUC than metrics based on the 
classification of partial response or response. As shown in 
Figure 2, this difference was consistent across all relevant 
SEP and INT metrics. While observed with both depression 
scales, this effect was especially marked for metrics based 
on the QIDS-SR.

Metrics based on total symptom severity scores, either 
the final total score (SEP) or the median of total scores 
(INT), had substantially lower ES and AUC values than 
SEP and INT metrics that quantified change from baseline 
in symptom severity, i.e. percentage change in total score at 
endpoint (SEP) or median percentage change in total symp-
tom scores (INT). Taking baseline symptom severity into 
account increased ES by two- to four-fold across the rele-
vant metric comparisons (Supplementary Table 2 and 
Figure 1).

Critically, with few exceptions, INT metrics pro -
duced greater separation of the treatment groups than the 
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Table 1. Baseline demographics and clinical characteristics of the total sample and the VNS + TAU and TAU treatment groups.

Total sample
N = 406

VNS + TAU
N = 234

TAU
N = 172 p

 Mean SD Mean SD Mean SD  

Age (yr) 49.57 10.22 49.20 10.66 50.07 9.61 0.33

MADRS 32.31 6.64 33.87 6.99 30.19 5.48 < 0.0001

QIDS-SR 18.10 4.09 18.97 3.97 16.91 3.96 < 0.0001

Duration current episode (yr) 8.26 10.03 7.41 8.74 9.42 11.49 0.45

Age at first depression diagnosis (yr) 29.13 10.96 28.80 10.66 29.58 11.37 0.59

No. of lifetime MDEa 5.30 3.63 5.61 3.68 4.88 3.54 0.03

No. of psychiatric hospitalizations in past 5 yearsa 1.99 2.66 2.38 2.84 1.47 2.29 0.0003

No. of lifetime suicide attemptsa 1.44 2.34 1.69 2.55 1.09 1.97 0.004

No. of lifetime failed courses of MDE treatment 7.98 3.11 8.23 3.18 7.63 2.99 0.04

 N % N % N %  

Gender (N, % female) 269 66.3 156 66.7 113 65.7 0.92

Bipolar MDE (N, % bipolar) 97 23.9 65 27.8 32 18.6 0.034

Age at depression diagnosis ⩽ 18 yr (N, % ⩽ 18 yr) 72 17.7 40 17.1 32 18.6 0.70

Received ECT lifetime (N, % ECT) 223 55.1 146 62.4 77 45.0 0.0006

VNS: vagus nerve stimulation; TAU: treatment as usual; SD: standard deviation; MADRS: Montgomery Åsberg Depression Rating Scale; QIDS-SR: 
Quick Inventory of Depressive Symptoms-Self Report; MDE: major depressive episode; ECT: electroconvulsive therapy.
P-values refer to the significance level of the contrast of VNS + TAU and TAU groups using the Wilcoxon rank-sum test for continuous measures 
and Fisher’s exact test for categorical variables.
aMaximum score of 10 applied.

corresponding SEP metrics (Figure 3). Paired comparison 
of the 10 corresponding SEP and INT metrics yielded sig-
nificant effects for both ES (p < 0.03) and AUC (p < 0.004). 
The severity-based measures with the largest ES and AUC 
were the median percentage improvement in MADRS 
(d = 0.63, AUC = 0.67) and QIDS-SR (d = 0.63. AUC = 0.68) 
scores. Among metrics using binary outcome classification, 
the proportion of the observation period in MADRS partial 
response (d = 0.53, AUC = 0.65) and QIDS-SR partial 
response (d = 0.46, AUC = 0.63) had the largest ES and 
AUC.

Propensity score adjustment

The pattern of differences among the metrics in distinguish-
ing the treatment conditions was preserved after controlling 
for the propensity score quintiles (Supplementary Table 4). 
The percentage of variance accounted for by treatment con-
dition for each of the 20 outcome metrics ranged from 0.4% 
to 8.7%.

Discussion

Current strategies for evaluating the efficacy of antidepres-
sant interventions are largely based on short-term outcomes 
and focus on rates of remission (Rush et al., 2022; Sackeim 
et al., 2023). Given that DTD is best conceptualized as a 
chronic condition, traditional outcome measures are insensi-
tive to the meaningful clinical improvement associated with 
more modest symptomatic change that persists for months or 
years. Researchers and clinicians need to develop outcome 
measures in DTD that reflect meaningful symptom change 
over time, with a similar need in other chronic medical con-
ditions (Francis et al., 2016; Nolte and Osborne, 2013).

This study compared a range of potential outcome met-
rics in their ability to distinguish treatment conditions 
already known to differ in clinical outcome, i.e. VNS cou-
pled with TAU vs TAU alone (Aaronson et al., 2017). Over 
a 24-month observation period, INT metrics based on the 
median percentage change in the clinician-rated MADRS 
and the patient rated QIDS-SR had the strongest overall 
performance in separating the treatment groups; INT 
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Figure 1. Effect size and area under the curve for each metric in separating the treatment groups, as a function of use of 
MADRS or QIDS-SR scores.
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Figure 2. Effect size and area under the curve in separating the treatment groups for metrics based on the classifications of 
partial response, response and remission. Single endpoint (SEP) metrics classified patients based on symptom scores at last 
observation, while integrative (INT) metrics reflected the proportion of the observation period that met criteria for the binary 
classifications.
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metrics based on the proportion of months in MADRS or 
QIDS-SR partial response had the strongest performance of 
outcome measures based on binary classification. As they 
do not capture the state of the patient over time (McAllister-
Williams et al., 2020; Rush et al., 2022), perhaps not sur-
prisingly, SEP metrics uniformly produced weaker 
separation of the treatment groups than their respective INT 
metrics. Given the infrequent and short-lasting nature of 
remission typically observed with DTD, as expected, SEP 
and INT metrics based on remission had the weakest per-
formance characteristics.

Across the metrics, ES and AUC for separating the treat-
ment groups were highly variable, with the six-fold range 
in ES extending from ‘no effect’ to a ‘moderate effect size’. 
Thus, even though all the metrics characterized sympto-
matic improvement, they differed markedly in their capac-
ity to detect a treatment group effect, with SEP metrics and 
those based on remission status fairing the poorest.

The similarities and differences in the findings of this 
and the previous study (Sackeim et al., 2023) are instruc-
tive. Using the same methods and dataset, the earlier study 
compared the metrics in separating groups that did and did 
not improve in endpoint QoL scores regardless of treatment 
condition, while this study focused on separation of the 
VNS + TAU vs TAU treatment groups. Change in symp-
tom severity and QoL are related phenomena, and across 
metrics, ES and AUC values were markedly higher in the 

first study. In the first study, ES and AUC values were also 
substantially higher across metrics based on the self-report 
QIDS-SR than the clinician-rated MADRS, while in this 
study, a smaller but significant effect in the opposite direc-
tion obtained. We have suggested that the shared method 
variance due to the use of self-report for both the QIDS-SR 
and the QoL measures accounted for this specification in 
the first study (Podsakoff et al., 2003; Spector et al., 2019). 
In contrast, in depression treatment trials ES for efficacy 
outcomes are often smaller for self-report than clinician-
rated scales (Lin et al., 2014; Prusoff et al., 1972; Sayer 
et al., 1993), and this was the pattern obtained in this study.

Of note, in the first study metrics reflecting SEP symp-
tom severity had the strongest relations with self-reported 
change in QoL, and this held especially for metrics based on 
the self-report QIDS-SR. In contrast, in this second study, 
the INT version of the same symptom severity metrics pro-
duced the strongest separation of the treatment groups. 
Thus, the choice of an optimal metric to detect an associa-
tion is likely contingent on the context and what is being 
predicted. Symptom severity at study endpoint may strongly 
influence concurrent self-reported QoL. In contrast, INT 
metrics, by integrating information from multiple assess-
ments, may provide a more reliable and sensitive measure of 
sustained treatment effects. In addition, symptomatic remis-
sion is widely considered the goal of antidepressant treat-
ment (Gelenberg, 2010; Möller, 2008; Rush et al., 2006b) 

Figure 3. Effect size and area under the curve (AUC) in separating the treatment groups for paired single endpoint (SEP) 
and integrative (INT) metrics. SEP metrics were based on symptom scores at last observation, while INT metrics averaged or 
aggregated scores over the entire observation period.
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and commonly is the primary efficacy outcome measure.
(Dean et al., 2021; O’Reardon et al., 2007; Rush et al., 
2006c; Sackeim et al., 2009), Both studies found, however, 
that metrics based on remission status, whether SEP or INT, 
had the weakest performance characteristics, while INT 
metrics based on partial response were especially useful in 
separating both the QoL and treatment groups.

Taken together, these two studies suggest revision of out-
come assessment in DTD. It seems that metrics that inte-
grate information over time about clinical state are especially 
powerful in detecting treatment effects and QoL improve-
ment. Perhaps an analogous approach should be evaluated 
in other psychiatric disorders (e. g. schizophrenia, OCD, 
PTSD or substance use disorders) where sustained response 
or remission is elusive and yet clinically meaningful effects 
on symptoms, function and/or QoL can be achieved.

The metrics compared in this study were designed to be 
mathematically simple and to convey meaningful informa-
tion to patients and clinicians about the magnitude and con-
sistency of change in symptom severity. The metrics were 
also designed to test key issues when selecting potential out-
come measures in a DTD sample: are absolute symptom 
scores or scores adjusted for baseline values more sensitive 
in detecting treatment group effects; do metrics that inte-
grate information over time differ from SEP metrics in sepa-
rating treatment conditions? It is important to note, however, 
that this study has limited implications for selecting the 
inferential statistical procedures with the greatest power to 
detect treatment effects. For example, in this study, percent-
age change metrics, whether SEP or INT, produced superior 
treatment group separation than metrics based on post-base-
line absolute scores. This does not entail that inferential sta-
tistics to establish a treatment effect in continuous measures 
should rely on percentage change as the primary dependent 
measure. There are multiple ways of adjusting post-treat-
ment scores for baseline values, and it is established for SEP 
outcomes that, under some conditions, analysis of covari-
ance (ANCOVA) can have greater power to detect treatment 
group differences than comparisons based on percentage 
change, especially when there are baseline imbalances 
between randomized groups or when the correlation between 
baseline and endpoint scores is weak (Vickers, 2001). Under 
other circumstances, ANCOVA on raw scores may have less 
power or greater bias than analyses based on percentage 
change measures (Van Breukelen, 2006, 2013). Rather, 
regardless of the statistical procedures used to detect a treat-
ment effect, the magnitude and consistency of this effect 
needs to be conveyed to patients and clinicians. The find-
ings of this study help guide selecting which metrics are 
likely to be most sensitive to treatment group differences in 
a DTD sample. When coupled with description of ES (small, 
medium or large), the magnitude and consistency of the 
therapeutic effects can be readily communicated.

In line with long-standing recommendations that incor-
porating longitudinal clinical data in statistical analyses 

enhances power to detect treatment effects relative to end-
point analysis (Gibbons et al., 1993; Gueorguieva and 
Krystal, 2004), there has been increased use in the psychi-
atric literature of repeated measures analysis of variance 
and random effects or mixed models (Gueorguieva and 
Krystal, 2004; Nierenberg et al., 2016). Similarly, we found 
that INT metrics were consistently more sensitive to treat-
ment group effects than SEP metrics. As in the discussion 
above on the use of ANCOVA vs percentage change meas-
ures, the choice of which inferential statistical model to 
apply to longitudinal data is distinct from the metrics 
selected to characterize the meaning of the obtained effect. 
Indeed, as statistical models become more complex, they 
are less likely to yield metrics informative of the extent of 
clinical benefit associated with interventions.

In oncology, the 5-year survival rate, whether absolute 
or relative, is a single metric that reflects the likelihood of a 
binary outcome over a substantial time period (Welch et al., 
2000). This metric is simple in its construction, highly 
informative to patients about prognosis, and fundamental in 
empirically gauging the effectiveness of interventions (Lu 
et al., 2019). It is not clear whether any single metric can 
have such a role in DTD and other chronic, difficult-to-treat 
mental disorders. Nonetheless, the two studies in this series 
demonstrate that metrics that have a lower threshold for 
declaring positive therapeutic outcome and which integrate 
information over time improve the detection of therapeutic 
benefit in DTD.

Limitations

The major limitations of this study are reliance on a sample 
of severely treatment-resistant patients treated with an 
implanted device. Whether similar findings would obtain in 
less resistant samples treated with psychotherapy or medi-
cation is unknown. Each metric ES provided only a single 
datapoint, regardless of the size of the sample contributing 
to its computation. We conducted statistical tests contrast-
ing pre-defined metric groupings (e.g. SEP vs INT, MADRS 
vs QIDS-SR) in ES and AUC values. While these statistical 
tests were supportive of the descriptive claims made about 
the differences among metrics, they should not be taken as 
confirming or rejecting hypotheses. The metrics within a 
grouping were not independent of each other, and the likeli-
hood of observing a statistically significant effect was con-
tingent on the number of metrics in each grouping. Multiple 
studies of this type, coupled with meta-analytic techniques 
to contrast metric performance across studies, are needed to 
establish generalizability.

Conclusion

In this long-term study of DTD, metrics that integrated 
information about symptom status repeatedly over time 
(INT metrics) were more powerful than SEP metrics in 
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differentiating treatment groups. Metrics based on remis-
sion status were the least sensitive to treatment condition.
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