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Abstract 

Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological 

and neurochemical correlate of reinforcement learning. However, evidence of a specific 

causal role of DA receptors in learning has been less forthcoming, especially in humans. Here 

we combine, in a between-subjects design, administration of a high dose of the selective DA 

D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral 

study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to 

predictions of prevailing models emphasizing DA´s pivotal role in learning via prediction 

errors, we found that sulpiride did not disrupt learning, but rather induced profound 

impairments in choice performance. The disruption was selective for stimuli indicating 

reward, while loss avoidance performance was unaffected. Effects were driven by volunteers 

with higher serum levels of the drug, and in those with genetically-determined lower density 

of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory 

role of the DA D2 receptor in choice performance that might be distinct from learning. Our 

findings challenge current reward prediction error models of reinforcement learning, and 

suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in 

motivational aspects of reinforcement learning may apply to humans as well. 
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INTRODUCTION 

Animals and humans flexibly choose actions in pursuit of rewards on a trial-and-error basis 

by forming stimulus-outcome associations that optimize the likelihood of obtaining future 

rewards, a process known as reinforcement learning. The neurotransmitter dopamine (DA) is 

thought to be central to this process, as evidenced by research in both non-human species 

(Bayer and Glimcher, 2005; Glimcher, 2011; Schultz, 1998; Schultz et al, 1997; Wise, 2004; 

Wise and Rompre, 1989) and humans (Chowdhury et al, 2013; Glimcher, 2011; Pessiglione et 

al, 2006). Mechanistic accounts hold that such learning is driven by a so-called ‘prediction 

error’ signaling the difference between expected and obtained events, which is then used to 

update predictions for events in the environment (Sutton and Barto, 1998). A putative 

neurobiological substrate of the prediction error signal for reward is the phasic firing of DA 

neurons in the midbrain (Montague et al, 1996) projecting to the striatum, one of the major 

input structures of the basal ganglia. Midbrain dopaminergic reward prediction error signals 

are assumed to regulate the plasticity of cortico-striatal synaptic transmission by enhancing 

NMDA-receptor-mediated postsynaptic currents (Calabresi et al, 2000; Seamans et al, 2001; 

Wang and O'Donnell, 2001). In doing so, they are thought to contribute to the strengthening 

of associations leading to rewarding, but not aversive, outcomes (Schultz et al, 1997). 

So far, human evidence for this account has derived mainly from clinical studies on the 

effects of dopaminergic medications in Parkinson´s disease e.g. (Frank et al, 2004; Palminteri 

et al, 2009; Voon et al, 2010) and Tourette´s syndrome (Palminteri et al, 2009). Studies of 

DA agonists or antagonists in healthy volunteers have produced inconclusive results, likely 

due to a reliance on low doses of available agents (Cohen et al, 2007; Jocham et al, 2011; 

Kirsch et al, 2005; McCabe et al, 2011; Mehta et al, 2005; Pessiglione et al, 2006; Pizzagalli 

et al, 2008; Riba et al, 2008; van der Schaaf et al, 2012), which do not cause a necessary level 

of postsynaptic DA D2 receptor occupancy. Low doses of amisulpride (similar to sulpiride, 

both are selective for DA D2/3 receptors) may also exert greater functional blockade of 
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cortical and limbic DA receptors, rather than striatal receptors (Bressan et al, 2003; Xiberas et 

al, 2001).  Thus, sufficiently high doses of sulpiride have to be administered in order to 

achieve an effective level of post-synaptic DA D2 receptor occupancy in the striatum. 

Previous studies have shown that a single dose of 400 mg of sulpiride occupies roughly 30% 

of striatal DA D2 receptors (Mehta et al, 2008), while 800 mg results in roughly 60% 

occupancy levels, without causing side effects in healthy volunteers (Takano et al, 2006). 

Thus, a dose of 800 mg should allow a direct test of striatal post-synaptic DA D2 receptor 

involvement in reinforcement learning. 

Striatal DA D2 receptor density is assumed to be influenced by genetic factors, with the DA 

D2 receptor Taq1A polymorphism being the most widely investigated variation, as the minor 

A1 allele has been associated with a reduction in striatal DA D2 receptor density of up to 30% 

(Jonsson et al, 1999; Pohjalainen et al, 1998; Ritchie and Noble, 1996, 2003; Thompson et al, 

1997). One might expect these A1+ carriers to be disproportionately sensitive to DA D2 

receptor antagonism in terms of behavioral impairments during reinforcement learning. Such 

a pharmacogenetic approach (Eisenegger et al, 2010; Eisenegger et al, 2013; Frank and 

Fossella, 2008) }, targeted to the D2 receptor, augments previous behavioral genetic studies 

that have been conducted without drug administration (Jocham et al, 2009; Klein et al, 2007). 

We investigate how behavioral impairments during reinforcement learning following DA 

D2/3 receptor antagonist administration are modulated by genetically-determined differences 

in striatal DA D2 receptor occupancy. This approach provides a means of addressing 

specificity for the DA D2 receptor. 

Whilst the role of the dopaminergic system in reward prediction has been widely investigated 

in animals and imaging studies in humans, the functions of this system extend well beyond 

reinforcement learning. One of the classical functions associated with DA is its control of the 

motivational aspects of behavior (Ahlenius et al, 1977; Bardgett et al, 2009; Beninger and 

Phillips, 1981; Berridge and Robinson, 1998; Lex and Hauber, 2010; Niv, 2007). For 
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instance, studies in rodents have shown that administration of DA antagonists disrupts the 

ability to associate a reward with the actions necessary to obtain it, but leaves consummatory 

behavior unaffected (Ikemoto and Panksepp, 1999; Wise, 2004). Therefore, it is important to 

bear in mind not only the role of DA in reinforcement learning but also in the modulation of 

the expression of such learning in performance (Salamone, 1994; Shiner et al, 2012; 

Smittenaar et al, 2012).  

In sum, while neurocomputational models emphasize DA as a neurochemical correlate of 

reinforcement learning via prediction errors, and impaired learning following DA antagonism 

as a consequence, animal models suggest impairments in expression of learned associations.  

Therefore, it is important to clarify whether a high dose of a DA D2/3 receptor antagonist 

impairs behavior during the acquisition phase of reinforcement learning or during the 

expression and maintenance of accurately learned associations. Furthermore, by investigating 

the influence of genetic differences in striatal DA D2 receptor density we are able to 

determine the specificity of any behavioral effects of the high dose DA D2/3 receptor 

antagonist during reinforcement learning. 

We administered 800 mg of sulpiride or placebo to 78 volunteers, genotyped for the DA D2 

receptor Taq1A polymorphism, in a behavioral genetic study of reinforcement learning. We 

studied learning using an established instrumental conditioning paradigm (Pessiglione et al, 

2006), during which volunteers are required to choose between two visual stimuli that are 

probabilistically associated with monetary gains and losses. In our version of the paradigm, 

there were two pairs of stimuli, one pair was associated with monetary gains (winning £1 with 

a probability of 75% or winning nothing with a probability of 25%), and a second pair was 

associated with a monetary loss (losing £1 with a probability of 75% or losing nothing with a 

probability of 25%). For the first pair, volunteers should seek out the symbol associated with a 

higher likelihood of winning £1 (i.e. to choose the “correct” symbol), while for the other pair, 
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volunteers should avoid the symbol associated with a higher likelihood of losing £1 (i.e. to 

avoid choosing the “incorrect” symbol).  

We hypothesized that sulpiride would produce behavioral impairments during reinforcement 

learning, and that these effects should vary as a function of individual differences in drug 

absorption. Furthermore, we expected volunteers with genetically determined reductions in 

striatal DA D2 receptor density would show the most pronounced behavioral impairments 

following sulpiride administration.  

 

MATERIALS AND METHODS  

Volunteers 

Seventy-eight healthy male participants with age range 19 – 44 years (mean = 32.1) 

participated in the study. All participants were recruited from the Cambridge BioResource, a 

large community-based panel of volunteers that agreed to take part in research linking 

genotype with phenotype (http://www.cambridgebioresource.org.uk). All volunteers were 

right-handed European or North American Caucasians. Participants were stratified based on 

their DA D2 receptor Taq1A genotype, with one group consisting of individuals carrying one 

or two copies of the A1 allele and the other group consisting of A2 allele homozygotes. 

All participants´ mental and physical health was screened prior to genotyping using a detailed 

medical history questionnaire used by Cambridge BioResource. This revealed no history of 

neurological disease or psychiatric disorders. In addition, the psychiatrist on site performed 

another structured interview, confirming that volunteers had no significant general 

psychiatric, medical, or neurological disorder and were not currently taking any prescription 

medicine, nor drugs of abuse. All volunteers were required to perform an alcohol test upon 

arrival to the lab using a commercially available breath alcohol analyzer. This confirmed that 

no volunteer had consumed alcohol on the study day. 
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The study was performed in accordance with the Declaration of Helsinki and approved by the 

National Research Ethics Committee of Hertfordshire (11/EE/0111). All participants were 

included in the study after having provided written informed consent. Data collection for two 

volunteers was unsuccessful, because one did not understand the instructions to the task, 

(placebo group, A1-), and the other because he felt uncomfortable in the testing room 

(sulpiride group, A1-).  

Experimental Design 

Volunteers were assigned to receive either a single oral dose of 800 mg of sulpiride or a 

respective placebo in a randomized and double blind manner. The resulting four groups of 

participants (A1+ with sulpiride, n = 21; A1+ with placebo, n = 17; A1- with sulpiride, n = 

20; A1- with placebo, n = 18) were all matched for age and BMI, post hoc tests revealed that 

there was no difference in general intelligence across groups (Mann-Whitney tests, ps > 

0.459).  

Procedure 

Upon arrival (between 0830 and 1000), volunteers completed the National Adult Reading 

Test assessing general intelligence and visual analogue scales (VAS) assessing alertness 

(Bond and Lader, 1974). They gave a first blood sample (10 ml), underwent assessments of 

heart rate and blood-pressure and were then required to ingest either the placebo or the 

sulpiride pill. Volunteers then entered a waiting period during which they were required to 

stay in the premises in separate and quiet rooms, and were allowed to read newspapers. To 

increase absorption of sulpiride volunteers were required to ingest a small snack. 

Three hours after drug loading (Mehta et al, 2003), when sulpiride plasma levels reached their 

peak, volunteers had to fill out a comprehensive side-effects questionnaire (Rush et al, 2003) 

and again a VAS assessing alertness. They then provided a second blood sample, and blood 

pressure and heart rate was measured again. At the end of the study, we asked volunteers to 

guess whether they received sulpiride or the placebo (Supplementary Information).  
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The reinforcement learning task was implemented in Visual Basic software and presented on 

computer screens. Instructions were first presented on screen, then they were summarized 

orally, and following this, volunteers performed the practice block, to get used to the task. 

All volunteers received a flat fee of £50 for participation in the study and an additional 

payment of 5% of their earnings in the reinforcement learning task. Each volunteer received 

payment in cash in private at the end of the study. 

Sulpiride and Prolactin Serum Concentration Measurements 

Serum sulpiride was measured by high performance liquid chromatography (HPLC) utilizing 

fluorescence end-point detection with prior solvent extraction. The excitation and emission 

wavelengths were 300nm and 360nm respectively. Both intra- and inter-assay coefficients of 

variation (CVs) were < 10% and the limit of detection was 5-10 ng/ml. 

Serum prolactin was measured by a commercial immunoradiometric assay (MP Biomedicals 

Ltd, UK), which utilized 
125

I as the ligand. The intra and inter-assay CVs were 4.2% and 8.2% 

respectively and the limit of detection was 0.5 ng/ml. 

Reinforcement Learning Task 

The task contained a total of 104 trials, and employed different pairs of geometrical shapes as 

visual stimuli. The first 24 trials were practice trials, after which new pairs of stimuli 

appeared. Following this, the main task started, which consisted of 40 trials of a “gain” 

domain, randomly interspersed with 40 trials of a “loss” domain amounting to a total of 80 

trials. 

Each of the two pairs of stimuli was associated with pairs of outcomes, i.e. win of £1 or nil in 

the “gain” domain and a loss of £1 or nil in the “loss” domain. In the “gain” domain, one 

stimulus was associated with a probability of winning £1 with 75% and a probability of 

winning nil with 25%, while the other stimulus was associated with a probability of winning 

£1 with 25% and winning nil with 75%. In the “loss” pair, one stimulus was associated with a 

probability of losing £1 with 75% and a probability of losing nil with 25%, while the other 
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stimulus was associated with a probability of losing £1 with 25% and losing nil with 75%. 

Volunteers were unaware of these percentages. 

On each trial, one pair was randomly presented and the two stimuli were displayed on the 

screen, right and left of a central fixation cross, their relative position being counterbalanced 

across trials. The volunteer was required to choose one of the two stimuli by pressing a 

corresponding keyboard button. Immediately after the decision, the choice was framed in bold 

and afterwards £1 coin was displayed in case of a gain, a crossed out coin was displayed in 

case of a loss and an empty white circle was displayed in case of the outcome nil. Volunteers 

were required to select between the two stimuli within a restricted time frame of 1700 ms. If 

volunteers did not respond within 1700 ms, they were penalized with a loss of £1, in both 

domains, along with text on-screen showing “too late”. Thus, in order to accumulate money, 

volunteers had to learn, by trial and error, the stimulus-outcome associations. 

Statistical Methods 

We used non-parametric Mann-Whitney tests to test for group differences in the distribution 

of behavioral choices in the learning task. As a robustness check of our results we fitted a log 

growth curve model to the data (Supplementary Information, Table S1).  

We used parametric Student’s t-tests to compare differences in the associated average 

response latencies. These were log transformed to meet statistical distributional assumptions 

(Judd and McClelland, 1989). We used raw response latencies for graphical representation 

and for reporting averages. 

To investigate whether a high dose of a DA D2/3 receptor antagonist impairs behavior during 

the acquisition phase of reinforcement learning and/or during the expression of accurately 

learned associations, we tested whether the learning rate changes over the 40 trials. We used a 

method developed by Bai and Perron (Bai and Perron), which endogenously identifies the 

number and location of structural breaks in the learning rate over the 40 trials. Using E-views 

8.0, the Bai-Perron multiple structural break test identified three basic phases of learning in 
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our data. In the gain domain, we identified pronounced and significant learning in early trials 

(trials 1 – 8), less pronounced but significant learning in the middle (9 – 24) and absent 

learning in later trials, i.e. we found that learning reached asymptote in trials ≥ 25. The 

according three phases in the loss domain were trials 1 – 12 (early), 13 – 30 (middle), 

reaching asymptote in trials ≥ 31 (see Supplementary Figure S1).  

Q-learning Model 

To reveal the nature of the observed behavioral impairments, we then applied to the data a Q-

learning model that also takes feedback processing into account and thus allows a more 

sophisticated interpretation of the data. The Q-learning model assumes that each volunteer 

forms a subjective value for each stimulus and updates this value based on the feedback 

received in each trial (Sutton et al, 1998). For each trial, we calculated the subjective value 

volunteers assign to each pair of stimuli A and B, indicated as   
  and   

 . This can be 

interpreted as the expected reward for choosing a certain stimulus A or B.   
  and   

  are 

updated with the feedback volunteers receive (    ) in each trial. Note that (    ) is not 

indexed with A and B, because if a volunteer for instance choses A and feedback indicates it 

was the “correct” choice, this feedback implies that B is the “incorrect” choice, simply 

because there are only two symbols to choose from. The following updating rule is used: 

  
  (   )    

       . The extent to which feedback (i.e., +£1, 0, - £1) influences the 

subjective values of the chosen stimulus is referred to as the learning rate and captured by 

model parameter   (Sutton et al, 1998). The higher the learning rate  , the higher the 

influence of recent feedback on   
  and   

 . Thus, a low    estimate reflects a relatively small 

impact of prior feedback on the current decision, whereas a higher   estimate indicates a 

larger impact of feedback. In other words, the current subjective value of each stimulus is 

updated with the difference between feedback in the previous trial and its previous subjective 

value, i.e. with the prediction error term (         
 ). 
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We then used the softmax function   
      (  

  ⁄ ) [   (  
  ⁄ )      (  

  ⁄ )]⁄  to 

estimate the probability (  ) with which each stimulus is chosen, and maximum likelihood 

methods to estimate the learning rate ( ) and temperature ( ). The starting values are 

  
    

   , which implies equiprobable choices at the beginning (  
    

     ). 

The temperature parameter ( ) specifies noise that reflects on the accuracy of response choice 

(Sutton et al, 1998). For example, for a volunteer who chooses randomly between the two 

stimuli, and thus whose choices do not correlate with the subjective value of the two stimuli, 

the   estimate is high. Vice-versa, if a volunteer always chooses the stimulus with the higher 

subjective value, then parameter   will be close to zero. Note that this implies that volunteers 

who are more likely to switch their choice when receiving an unexpected feedback show a 

higher  . 

Earlier research suggests that dopamine neurons might be differentially involved in learning 

from positive and negative feedback (Daw et al, 2002; Frank et al, 2004). Hence, we estimate 

separate parameters (  and  ) for the gain and loss domains. To test whether a model with 

separate parameters is indeed a better specification than models with combined or partially 

combined parameters (e.g. separate   and combined  ), we compare these different models 

using the Bayesian Information Criteria. This model comparison confirms that separate 

parameters give a better fit than combined or partially combined parameters (Supplementary 

information, Table S3). 

All reported p values are based on two-sided z-tests. The detailed results for the Q-learning 

model can be found in the Supplementary Information (Table S2). 
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RESULTS 

Sulpiride Decreases Frequency of Correct Choices 

We found that volunteers successfully learned over 40 trials to choose the high-probability 

gain symbol and avoid choosing the high-probability loss symbol (Figure 1a). Whilst the 

probability of the volunteers choosing the ‘correct’ symbol increased over the task, sulpiride 

impaired this selectively for gains: i.e. for choosing a stimulus indicating a high probability of 

monetary gain, but not for avoiding the stimulus associated with monetary loss (Figure 1a).  

Significant drug effects were not apparent until learning had reached a stable level (trials ≥ 

25). In this asymptotic phase, identified via a multiple break-point analysis (Bai et al, 1998), 

volunteers receiving sulpiride chose the high-probability gain symbol (85% “correct” choices) 

less often compared to those receiving placebo (94% “correct” choices, Mann-Whitney test, p 

= 0.016 , n = 76). No such effects were observed in the earlier phases of learning, and in the 

loss domain (all ps > 0.15). Together this suggests that sulpiride affected behavior in the 

asymptotic phase of learning, selectively in the gain, but not the loss domain.  

To reveal the nature of the observed behavioral impairments, we applied to the data a Q-

learning model that distinguishes two major components of reinforcement learning, i.e. the 

learning rate and choice performance.  

Sulpiride Selectively Affects Choice Performance 

We did not observe any significant differences between the placebo and the sulpiride group 

on the learning rate   (Figure 2a, Supplementary Table S2), neither in the gain (placebo   = 

0.06, sulpiride   = 0.06, p = 0.819) nor loss domain (placebo   = 0.15, sulpiride   = 0.13, p 

= 0.389). In contrast,  was 57% higher in the sulpiride group compared to the placebo group 

(placebo  = 0.14, sulpiride   = 0.22, p = 0.005). This effect was selective for the gain 

domain (treatment x domain interaction term = -0.10, p = 0.008), with sulpiride having no 

effect on   in the loss domain (placebo   = 0.32, sulpiride   = 0.30, p = 0.368). These results 
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suggest that sulpiride impairs learned choice performance of symbols indicating a high 

probability of monetary gain. 

Analysis of response latencies revealed a similar pattern of results (Figure 3 and 

Supplementary Table S5). Sulpiride induced a significant prolongation of response latencies 

in the gain domain, when learning had converged (566 ms vs. 611 ms, t-test, p = 0.044). The 

increase in response times was not significant in the loss domain (767 ms vs. 792 ms, t-test, p 

= 0.621).  

We also found no apparent side effects on heart rate, blood pressure and self-reported 

neurovegetative symptoms, as well as alertness, calmness and contentedness (Supplementary 

Table S4). Moreover, volunteers were at chance levels in guessing whether they had received 

sulpiride or placebo (Supplementary Information). Furthermore, as an indication of post-

synaptic DA D2 effects we found that sulpiride administration induced a significant rise in 

serum prolactin values (Supplementary Information). 

Serum Sulpiride Values Predict Impairments in Choice Performance 

Substantial individual differences were observed in serum sulpiride concentrations (range: 

164 ng/ml – 1782 ng/ml, median = 426 ng/ml), providing a means of estimating possible 

dose-response effects (Dodds et al, 2009).  To reduce noise, we aggregated these values in 

two groups by median split. Note that Taq1A genotype was not significantly associated with 

the two groups (below median: A1+ (n = 9) and A1- (n = 11); above median: A1+ (n = 12) 

and A1- (n = 7) carriers, t-test, p = 0.27). 

If the sulpiride effects observed above are in fact primarily a result of post-synaptic DA D2/3 

blockade, then these effects should be most pronounced in those who have high serum levels.  

Indeed, we found that the above reported sulpiride effect was driven by volunteers with higher 

serum levels (Figure 1b). In the asymptotic phase of learning, volunteers with higher serum 

levels choose the high-probability gain symbol less frequently (75% on average) than 

volunteers with low serum values (94% on average, Mann-Whitney test, p = 0.031 , n = 39).  
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Analysis of model parameters showed that effects were linked to a higher parameter   (Figure 

2b, Supplementary Table S2), with higher serum levels being associated with a substantial 

183% increase in   (lower sulpiride   = 0.12, higher sulpiride   = 0.34, p = 0.001), 

selectively in the gain domain (serum level group x domain interaction term  = -0.17, p = 

0.029), with effects on   being absent in the loss domain (lower sulpiride   = 0.28, higher 

sulpiride   = 0.33, p = 0.168). There were no significant effects on  (main and interaction 

effects, all ps > 0.190). Furthermore, we find that volunteers with lower serum levels do not 

behave differently than volunteers receiving placebo. In the asymptotic phase, volunteers with 

lower serum levels (<426 ng/ml ) chose the correct symbol as often as volunteers receiving 

placebo (94% on average in both groups, Mann-Whitney test, p = 0.44 , n = 57).  The 

estimated parameters of the Q-learning model are also not different between volunteers 

receiving placebo and those receiving sulpiride and low serum levels (placebo   = 0.14, lower 

sulpiride   = 0.12, p = 0.403; placebo   = 0.06, lower sulpiride   = 0.05, p = 0.948). Thus, 

earlier studies used DA D2 antagonist doses that were probably insufficiently high to occupy 

a substantial proportion of post-synaptic striatal DA D2 receptors (Jocham et al, 2011; Mehta 

et al, 2005; Mehta et al, 2008; Pessiglione et al, 2006; van der Schaaf et al, 2012). Our results 

indicate that high dose sulpiride impairs learned choice performance, driven by those who 

achieve higher serum levels thus indicating that effects are driven by blockade of post-

synaptic DA D2/3 receptors.  

Impairments in Choice Performance are Linked to DA D2 Receptor Genotype 

While sulpiride has higher selectivity for the DA D2 type receptors (with no significant 

binding to DA D1 type,  adrenergic, histaminergic or serotoninergic receptors), it does not 

distinguish DA D2 and D3 receptors. Stratification of our sample by a D2-receptor specific 

genetic polymorphism, the Taq1A genotype, provided a means of addressing specificity for 

the DA D2 receptor. We tested whether volunteers who carry a genotype associated with a 

roughly 30% reduction in DA D2 receptor density showed a more marked impairment in 
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learned choice performance following sulpiride administration. This pharmacogenetic 

approach also sheds light on the issue of whether this polymorphism is involved in generating 

behavioral variation or whether it is only spuriously correlated with it.  

We found that volunteers carrying at least one copy of the A1 allele (A1+) drove the sulpiride 

effect (Figure 4a and b). These volunteers showed a prominent behavioral impairment during 

learning about reward predicting stimuli, with A1+ carriers receiving placebo choosing the 

high-probability reward symbol on average 99% of the time in the asymptotic phase, whereas 

A1+ volunteers receiving sulpiride chose this symbol less often (82% on average, Mann-

Whitney test, p = 0.048, n = 38). However, there was no significant effect in volunteers who 

were not carrying a copy of the minor A1 allele (A1-, Mann-Whitney test, p = 0.165, n = 38).  

Q-learning model results showed that sulpiride significantly affected A1+, but not A1-, 

volunteers’ choice performance (treatment x genotype interaction term = -0.20, p = 0.001, 

Figure 2c, Supplementary Table S2). A1+ volunteers receiving sulpiride showed a 211% 

increase in  (placebo  = 0.09, sulpiride   = 0.28, p < 0.001), selectively in the gain domain 

(treatment x domain interaction term = -0.24, p < 0.001), with effects on   being absent in the 

loss domain (placebo   = 0.34, sulpiride   = 0.29, p = 0.190). There were no significant 

effects on  (main and interaction effects, all ps > 0.172). 
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DISCUSSION 

Administration of a high dose (800 mg) of the selective DA D2/3 receptor antagonist sulpiride 

had no effect on reinforcement learning, but impaired the expression of this learning in choice 

performance for gains, though not monetary losses. This effect was mirrored in response time 

slowing and was behaviorally selective with no side effects of the drug on blood pressure, 

heart rate or self-report measures of sedation. The impairment in choice performance was 

dose-dependent in the sense that volunteers who had higher levels of serum sulpiride (based 

on a median split) showed the most prominent deficits. We also found that the sulpiride effect 

was greater in volunteers carrying at least one copy of the minor allele of the DA D2 receptor 

Taq1A polymorphism, which is known to be associated with a 30% reduction in striatal DA 

D2 receptors. These results bear on the precise functions of different DA receptors in 

reinforcement learning and performance, with the DA D2 receptor being implicated primarily 

in appetitive performance. 

Our main finding is that post-synaptic DA D2 receptor blockade affects the asymptote of 

correct percentage choice performance. We used a Q-learning algorithm with a learning 

parameter   and temperature  reflecting choice performance in the task to model behavioral 

choices. Although these two parameters are mathematically not entirely independent from 

each other, our results show that sulpiride selectively increased  suggesting impairments in 

choice performance.  

The lack of effect of DA D2 receptor blockade on the learning rate  in our data is at first 

sight difficult to reconcile with the postulated role of DA in learning through reward 

prediction errors (Montague et al, 1996; Pessiglione et al, 2006; Schultz, 1998). However, the 

DA D1 receptor could be hypothesized to have a more specific role in learning, because it has 

a relatively low affinity for DA binding, and is more closely associated with phasic DA 

release following receipt of unexpected rewards (Dreyer et al, 2010). Hence the DA D1 

receptor is implicated in the phasic DA surges that result from unexpected rewards obtained 
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in the initial phase of the reinforcement learning task and might facilitate learning via 

NMDA-dependent long-term plasticity (Lovinger, 2012; Zweifel et al, 2009). In contrast, the 

DA D2 receptor has high affinity (Rice and Cragg, 2008) for DA binding and is more closely 

related to tonic dopaminergic activity which has been linked to response vigor and 

motivational effects (Robbins and Everitt, 1992). Consequently, blockade of the DA D2 

receptor may spare learning from reward predictions, but result in impairments in expression 

of such learning, in the form of choice performance impairments and response time slowing.  

Apparently consistent with the reward prediction error account of DA function, Pessiglione et 

al. (Pessiglione et al, 2006) reported that administration of a low dose of the non-selective DA 

D2 antagonist haloperidol decreased the sum of correct choices in a reinforcement learning 

task compared to administration of L-DOPA (the biochemical precursor of DA), which leads 

to a non-specific increase in brain DA levels. However, as statistical tests against a placebo 

group were not significant, their results precluded deriving conclusions regarding the role of 

the DA D2 receptor in reinforcement learning and performance. 

The fact that we did not observe effects in the loss condition is relevant in the light of a basal 

ganglia model of DA function proposing that avoidance learning is mediated by DA D2 

receptors. The model suggests that the DA decreases below baseline (‘dips’) that occur when 

an outcome is worse than expected (Schultz, 2002) would release otherwise tonically 

activated D2 receptors on striatopallidal neurons (Frank, 2005). Accordingly, release of D2 

receptors is thought to facilitate learning from losses via the so-called “indirect” pathway 

(Frank, 2005). The prediction then is that a pharmacological blockade of post-synaptic D2 

receptors (simulating a lack of D2 receptor stimulation during dips) would enhance avoidance 

learning. While this model has received support from studies in Parkinson’s disease patients 

(Frank et al, 2004) and from behavioral genetic studies of the DA D2 receptor without drug 

administration (Jocham et al, 2009; Klein et al, 2007), we neither found a main effect of 

sulpiride, a serum-sulpiride dependent, nor a pharmacogenetic interaction effect on avoidance 
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learning. This clearly points to the DA D2 receptor as being less critically implicated in 

aversive instrumental learning than predicted by this model (Frank, 2005) and adds 

psychopharmacological evidence in healthy humans to the general discussion of the relative 

involvement of DA in reward over punishment processing (Brischoux et al, 2009; Lammel et 

al, 2011; Matsumoto and Hikosaka, 2009; Mirenowicz and Schultz, 1996).   

The lack of behavioral effects and absence of response time slowing in the loss condition, 

together with a general absence of physiological and self-reported side effects, excludes 

general impairments in sensorimotor coordination and attention in accounting for the sulpiride 

effects in the gain condition. This is consistent with animal research showing that DA receptor 

blockade can impair appetitive performance both by diminishing incentive-motivation as well 

by impairing the initiation and selection of action (Berridge et al, 1998; Blackburn et al, 1987; 

Ikemoto et al, 1999; Robbins et al, 1992; Wise, 2004) and with findings that tonic DA acting 

on DA D2 receptors primarily affect late stage performance, via modulating PFC-NAcc 

information processing (Goto and Grace, 2005). Sulpiride might also have affected 

performance through effects on the matching vs maximization trade-off (Morris et al, 2006). 

For example, volunteers treated with sulpiride could be less motivated to maximize their 

rewards in the probabilistic reinforcement task and rather tend to match reinforcement rates 

across the two options. Overall, the findings raise the interesting issue of how motivational 

factors interact with reinforcement learning to generate not only performance of a task but 

also its initial acquisition. Specifically, dopaminergic medication altered the ability to apply 

instructions concerning which outcomes were rewarding to existing stimulus– outcome 

associations.  

Our study has limitations in that we restricted our study to investigating male participants, 

arising from the rationale that menstrual cycle effects in females an unwanted source of 

variance. Thus, future studies might investigate whether the same results can be obtained in 

healthy young females. Finally, the stratified genotype groups were comparatively small. 
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Thus, although our pharmacogenetic approach goes beyond mere genotype behavior 

correlations, independent replication is warranted.  

In sum, our results shed new light on the role of DA D2 receptor blockade in reinforcement 

learning in healthy volunteers by showing that DA D2 receptor blockade impairs measures of 

choice performance rather than the learning rate. Our findings might have relevance in the 

context of pharmacological treatment of psychosis, by pointing to genetic susceptibilities in 

causing impairments in motivation as a result of DA receptor antagonist administration. The 

results may have implications for understanding the behavioral mechanisms of action of anti-

psychotic drugs and may, for example, be consistent with the view that they reduce ‘aberrant 

motivational salience’ of stimuli hypothetically contributing to positive symptoms (Kapur, 

2003). Furthermore, our findings may have relevance in the context of anhedonia, which is 

characterized by a low motivation to provide effort for rewards (Treadway and Zald, 2013), 

and is a common symptom in schizophrenic patients treated with DA receptor blockers. 
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Figures and Figure Legends 

 

Figure 1 Sulpiride effects on reinforcement learning. The learning curves depict the ratio of 

volunteers that chose the “correct” stimulus in the gain domain (upper graph, solid lines), and 

the “incorrect” stimulus in the loss domain (lower graph, dashed lines). In the gain domain, 

the “correct” stimulus is associated with a probability of 0.75 of winning £1, while in the loss 

domain the “incorrect” stimulus is associated with a probability of 0.75 of losing £1. (a) 

Sulpiride (red) compared to placebo (blue) induces behavioral impairments in the gain 

domain after learning has plateaued (Mann-Whitney test, p = 0.016, n = 76). (b) Sulpiride 

group divided by serum values through median split. Higher serum levels (red) relate to more 

prominent impairments in the gain domain, when compared to volunteers with lower serum 

levels (blue, Mann-Whitney test, p = 0.031, n = 39). 
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Figure 2 Parameter estimates of the Q-learning model across drug, serum value and genotype 

groups, separately for the gain and loss domain. (a) Temperature parameter gain is 

significantly higher in the sulpiride group (57% increase compared to the placebo, p = 0.005), 

but the learning rate gain is not affected, and there are no effects in the loss domain (loss, 

loss). (b) Higher sulpiride serum values selectively affect the temperature parameter gain 

(183% increase in high compared to low serum values, p = 0.001), with no effects on either 

gain, loss or loss. (c) Pronounced sulpiride effects on gain are observed in A1+ genotype 

carriers (211% increase following sulpiride compared to placebo administration, p < 0.001), 

but not in A1- genotype carriers. 
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Figure 3 Response latencies over trials. (a) While response latencies decrease over trials in 

both groups, volunteers in the sulpiride (red) compared to the placebo (blue) group show 

higher response latencies in the gain domain in the plateau phase of learning (t-test, p = 

0.044, n = 76). (b) Response latencies in the loss domain are higher than in the gain domain, 

and there is no significant difference between the sulpiride group (red) and the placebo group 

in the loss domain (blue).  
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Figure 4 Pharmacogenetic interaction of sulpiride and DA D2 receptor Taq1A polymorphism 

on reinforcement learning. (a) Volunteers with a genetically determined reduction in DA D2 

receptor density (A1+ allele carriers) show behavioral impairments during reinforcement 

learning following sulpiride (red) compared to placebo (blue) administration in the gain 

domain (upper graph, solid lines, Mann-Whitney test, p = 0.048, n = 38), but not in the loss 

domain (lower graph, dashed lines). (b) Sulpiride (red) compared to placebo (blue) has no 

significant effect in either the gain (upper graph, solid lines) or the loss (lower graph, dashed 

lines) domain in volunteers who carry the common variant (A1-) of the polymorphism.  
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