45 research outputs found

    Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    Get PDF
    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper

    Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    Get PDF
    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed

    Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators

    Get PDF
    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator

    International Collaboration for Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    Get PDF
    An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration

    GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation

    Get PDF
    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context

    Design of an accelerator-based shielding experiment at the NASA Space Radiation Laboratory relevant to enclosed, shielded environments in space

    Get PDF
    Recent calculations indicate that the dose equivalent in an enclosed, shielded environment in a galactic cosmic ray field will increase or remain unchanged when shielding thickness increases beyond 20 to 30 g/cm2. This trend is seen out to 100 g/cm2, beyond which calculations were not run since depths greater than this are not envisioned for human missions in deep space. If these calculations are accurate, then an optimal shielding thickness (or narrow range of thicknesses) exists, with important implications for spacecraft and habitat design. Crucially, the calculation reveals a minimum dose equivalent value that cannot be reduced with added shielding, leaving mission duration as the only means of controlling accumulated dose equivalent so as to remain within recommended limits. In order to provide a benchmark set of experimental data that can be used to quantify the uncertainties in the calculations and provide some level of verification of their predictions, we have designed a series of experiments at the NASA Space Radiation Laboratory at Brookhaven National Laboratory to measure the light ion production created by GCR-like beams incident on a two-target system that mimics an enclosed, shielded environment. This paper gives detailed descriptions of the experimental configurations to provide accurate input data for transport models. Subsequent articles report the measurement results and comparisons to models

    Why did socialist economies fail? The role of factor inputs reconsidered

    Get PDF
    We re-estimate investment and present revised growth accounts for three socialist economies between 1950 and 1989. Government statistics reported distorted measures for both the rate and trajectory of productivity growth in Czechoslovakia, Hungary, and Poland. Researchers have benefited from revised output data, but continued to use official statistics on capital input, or estimated capital stock from official investment data. Investment levels and rates of capital accumulations were much lower than officially claimed and over-reporting worsened over time. A setback in factor accumulation, both equipment investment and labor input, contributed very significantly to the socialist growth failure of the 1980s

    Clinical course and outcome of SARS-CoV-2 infection in multiple sclerosis patients treated with disease-modifying therapies — the Polish experience

    Get PDF
    Introduction. The aim of this study was to report the course and outcome of SARS-CoV-2 infection in multiple sclerosis (MS) patients treated with disease-modifying therapies (DMTs) in Poland. A major concern for neurologists worldwide is the course and outcome of SARS-CoV-2 infection in patients with MS treated with different DMTs. Although initial studies do not suggest an unfavourable course of infection in this group of patients, the data is limited.Materials and methods. This study included 396 MS patients treated with DMTs and confirmed SARS-CoV-2 infection from 28 Polish MS centres. Information concerning patient demographics, comorbidities, clinical course of MS, current DMT use, as well as symptoms of SARS-CoV-2 infection, need for pharmacotherapy, oxygen therapy, and/or hospitalisation, and short-term outcomes was collected up to 30 January 2021. Additional data about COVID-19 cases in the general population in Poland was obtained from official reports of the Polish Ministry of Health.Results. There were 114 males (28.8%) and 282 females (71.2%). The median age was 39 years (IQR 13). The great majority of patients with MS exhibited relapsing-remitting course (372 patients; 93.9%). The median EDSS was 2 (SD 1.38), and the mean disease duration was 8.95 (IQR 8) years. Most of the MS patients were treated with dimethyl fumarate (164; 41.41%). Other DMTs were less frequently used: interferon beta (82; 20.70%), glatiramer acetate (42; 10.60%), natalizumab (35;8.84%), teriflunomide (25; 6.31%), ocrelizumab (20; 5.05%), fingolimod (16; 4.04), cladribine (5; 1.26%), mitoxantrone (3; 0.76%), ozanimod (3; 0.76%), and alemtuzumab (1; 0.25%). The overall hospitalisation rate due to COVID-19 in the cohort was 6.81% (27 patients). Only one patient (0.3%) died due to SARS-CoV-2 infection, and three (0.76%) patients were treated with mechanical ventilation; 106 (26.8%) patients had at least one comorbid condition. There were no significant differences in the severity of SARS-CoV-2 infection regarding patient age, duration of the disease, degree of disability (EDSS), lymphocyte count, or type of DMT used.Conclusions and clinical implications. Most MS patients included in this study had a favourable course of SARS-CoV-2 infection. The hospitalisation rate and the mortality rate were not higher in the MS cohort compared to the general Polish population. Continued multicentre data collection is needed to increase the understanding of SARS-CoV-2 infection impact on the course of MS in patients treated with DMTs

    Daphnia parasite dynamics across multiple Caullerya epidemics indicate selection against common parasite genotypes

    Get PDF
    Studies of parasite population dynamics in natural systems are crucial for our understanding of host–parasite coevolutionary processes. Some field studies have reported that host genotype frequencies in natural populations change over time according to parasite-driven negative frequency-dependent selection. However, the temporal patterns of parasite genotypes have rarely been investigated. Moreover, parasite-driven negative frequency-dependent selection is contingent on the existence of genetic specificity between hosts and parasites. In the present study, the population dynamics and host-genotype specificity of the ichthyosporean Caullerya mesnili, a common endoparasite of Daphnia water fleas, were analysed based on the observed sequence variation in the first internal transcribed spacer (ITS1) of the ribosomal DNA. The Daphnia population of lake Greifensee (Switzerland) was sampled and subjected to parasite screening and host genotyping during C. mesnili epidemics of four consecutive years. The ITS1 of wild-caught C. mesnili-infected Daphnia was sequenced using the 454 pyrosequencing platform. The relative frequencies of C. mesnili ITS1 sequences differed significantly among years: the most abundant C. mesnili ITS1 sequence decreased and rare sequences increased over the course of the study, a pattern consistent with negative frequency-dependent selection. However, only a weak signal of host-genotype specificity between C. mesnili and Daphnia genotypes was detected. Use of cutting edge genomic techniques will allow further investigation of the underlying micro-evolutionary relationships within the Daphnia–C. mesnili system
    corecore