7 research outputs found

    Global population structure of the Serratia marcescens complex and identification of hospital-adapted lineages in the complex

    No full text
    International audienceSerratia marcescens is an important nosocomial pathogen causing various opportunistic infections, such as urinary tract infections, bacteremia and sometimes even hospital outbreaks. The recent emergence and spread of multidrug-resistant (MDR) strains further pose serious threats to global public health. This bacterium is also ubiquitously found in natural environments, but the genomic differences between clinical and environmental isolates are not clear, including those between S. marcescens and its close relatives. In this study, we performed a large-scale genome analysis of S. marcescens and closely related species (referred to as the ‘ S. marcescens complex’), including more than 200 clinical and environmental strains newly sequenced here. Our analysis revealed their phylogenetic relationships and complex global population structure, comprising 14 clades, which were defined based on whole-genome average nucleotide identity. Clades 10, 11, 12 and 13 corresponded to S. nematodiphila , S. marcescens sensu stricto , S. ureilytica and S. surfactantfaciens , respectively. Several clades exhibited distinct genome sizes and GC contents and a negative correlation of these genomic parameters was observed in each clade, which was associated with the acquisition of mobile genetic elements (MGEs), but different types of MGEs, plasmids or prophages (and other integrative elements), were found to contribute to the generation of these genomic variations. Importantly, clades 1 and 2 mostly comprised clinical or hospital environment isolates and accumulated a wide range of antimicrobial resistance genes, including various extended-spectrum β-lactamase and carbapenemase genes, and fluoroquinolone target site mutations, leading to a high proportion of MDR strains. This finding suggests that clades 1 and 2 represent hospital-adapted lineages in the S. marcescens complex although their potential virulence is currently unknown. These data provide an important genomic basis for reconsidering the classification of this group of bacteria and reveal novel insights into their evolution, biology and differential importance in clinical settings

    The global population structure and evolutionary history of the acquisition of major virulence factor-encoding genetic elements in Shiga toxin-producing Escherichia coli O121:H19

    Full text link
    Shiga toxin (Stx)-producing Escherichia coli (STEC) are foodborne pathogens causing serious diseases, such as haemorrhagic colitis and haemolytic uraemic syndrome. Although O157:H7 STEC strains have been the most prevalent, incidences of STEC infections by several other serotypes have recently increased. O121:H19 STEC is one of these major non-O157 STECs, but systematic whole genome sequence (WGS) analyses have not yet been conducted on this STEC. Here, we performed a global WGS analysis of 638 O121:H19 strains, including 143 sequenced in this study, and a detailed comparison of 11 complete genomes, including four obtained in this study. By serotype-wide WGS analysis, we found that O121:H19 strains were divided into four lineages, including major and second major lineages (named L1 and L3, respectively), and that the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS) was acquired by the common ancestor of O121:H19. Analyses of 11 complete genomes belonging to L1 or L3 revealed remarkable interlineage differences in the prophage pool and prophage-encoded T3SS effector repertoire, independent acquisition of virulence plasmids by the two lineages, and high conservation in the prophage repertoire, including that for Stx2a phages in lineage L1. Further sequence determination of complete Stx2a phage genomes of 49 strains confirmed that Stx2a phages in lineage L1 are highly conserved short-tailed phages, while those in lineage L3 are long-tailed lambda-like phages with notable genomic diversity, suggesting that an Stx2a phage was acquired by the common ancestor of L1 and has been stably maintained. Consistent with these genomic features of Stx2a phages, most lineage L1 strains produced much higher levels of Stx2a than lineage L3 strains. Altogether, this study provides a global phylogenetic overview of O121:H19 STEC and shows the interlineage genomic differences and the highly conserved genomic features of the major lineage within this serotype of STEC
    corecore