18 research outputs found

    Case studies of electrical characterisation of graphene by terahertz time-domain spectroscopy

    Get PDF
    Graphene metrology needs to keep up with the fast pace of developments in graphene growth and transfer. Terahertz time-domain spectroscopy (THz-TDS) is a non-contact, fast, and non-destructive characterization technique for mapping the electrical properties of graphene. Here we show several case studies of graphene characterization on a range of different substrates that highlight the versatility of THz-TDS measurements and its relevance for process optimization in graphene production scenarios

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    書評 : 三谷博・並木頼寿・月脚達彦編『大人のための近現代史 : 19世紀編』(東京大学出版会、2009年)

    No full text

    Meiji at 150 Podcast, Episode 003, Dr. Kenneth J. Ruoff (Portland State University)

    No full text
    In this episode, Dr. Ruoff explains the impact of the Meiji Restoration in global history and the role of the emperor system in Japanese modernization. We discuss the longevity of the emperor system in relation to its flexibility, as well as its centrality in both the prewar and postwar Japanese political and cultural environments.Arts, Faculty ofHistory, Department ofNon UBCUnreviewedFacult

    Probing the adhesion interactions of graphene on silicon oxide by nanoindentation

    No full text
    Although a variety of fundamental mechanical properties of graphene have been investigated, the nature of interactions between graphene and other materials is not yet fully understood. Here, we report on adhesive interactions between diamond indenters and monolayer, bilayer and trilayer graphene on silicon oxide as well as bare silicon oxide and graphite over relatively small spatial domains. Displacement-controlled nanoindentation with an ultralow noise force sensor allowed the complete adhesive responses to be observed without the usual instabilities associated with nanoindenters that operate in force control. It was found that the approach and withdrawal force profiles between diamond and graphene depended on the number of layers of graphene. The unloading response contained very characteristic features, which were attributed to separation between graphene and silicon oxide in subsequent stress analyses of the experiments. The numerical stress analyses accounted for the interactions between the probe and the graphene as well as between graphene and silicon oxide via traction-separation relations which included attractive and repulsive interactions. As a result, it was possible to extract the energy, strength and range of the interactions for all cases, thereby providing a much richer measure of the interactions than relying solely on force profiles.clos

    Selective mechanical transfer of graphene from seed copper foil using rate effects

    No full text
    A very fast, dry transfer process based on mechanical delamination successfully effected the transfer of large-area, CVD grown graphene on copper foil to silicon. This has been achieved by bonding silicon backing layers to both sides of the graphene-coated copper foil with epoxy and applying a suitably high separation rate to the backing layers. At the highest separation rate considered (254.0 ??m/s), monolayer graphene was completely transferred from the copper foil to the target silicon substrate. On the other hand, the lowest rate (25.4 ??m/s) caused the epoxy to be completely separated from the graphene. Fracture mechanics analyses were used to determine the adhesion energy between graphene and its seed copper foil (6.0 J/m2) and between graphene and the epoxy (3.4 J/m2) at the respective loading rates. Control experiments for the epoxy/silicon interface established a rate dependent adhesion, which supports the hypothesis that the adhesion of the graphene/epoxy interface was higher than that of the graphene/copper interface at the higher separation rate, thereby providing a controllable mechanism for selective transfer of graphene in future nanofabrication systems such as roll-to-roll transferclose5

    Ultra Long-Range Interactions between Large Area Graphene and Silicon

    No full text
    The wet-transfer of graphene grown by chemical vapor deposition (CVD) has been the standard procedure for transferring graphene to any substrate. However, the nature of the interactions between large area graphene and target substrates is unknown. Here, we report on measurements of the tractionseparation relations, which represent the strength and range of adhesive interactions, and the adhesion energy between wet-transferred, CVD grown graphene and the native oxide surface of silicon substrates. These were determined by coupling interferometry measurements of the separation between the graphene and silicon with fracture mechanics concepts and analyses. The measured adhesion energy was 357 +/- 16 mJ/m(2), which is commensurate with van der Waals interactions. However, the deduced tractionseparation relation for graphene-silicon interactions exhibited a much longer range interaction than those normally associated with van der Waals forces, suggesting that other mechanisms are present
    corecore