101 research outputs found

    Transgenic mouse model harboring the transcriptional fusion Ccl20-luciferase as a novel reporter of pro-inflammatory response

    Get PDF
    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.Laboratorio de Investigaciones del Sistema InmuneFacultad de Ciencias Exacta

    On the thermoelectricity of correlated electrons in the zero-temperature limit

    Full text link
    The Seebeck coefficient of a metal is expected to display a linear temperature-dependence in the zero-temperature limit. To attain this regime, it is often necessary to cool the system well below 1K. We put under scrutiny the magnitude of this term in different families of strongly-interacting electronic systems. For a wide range of compounds (including heavy-fermion, organic and various oxide families) a remarkable correlation between this term and the electronic specific heat is found. We argue that a dimensionless ratio relating these two signatures of mass renormalisation contains interesting information about the ground state of each system. The absolute value of this ratio remains close to unity in a wide range of strongly-correlated electron systems.Comment: 15 pages, including two figure

    Transgenic mouse model harboring the transcriptional fusion Ccl20-luciferase as a novel reporter of pro-inflammatory response

    Get PDF
    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.Laboratorio de Investigaciones del Sistema InmuneFacultad de Ciencias Exacta

    Airway structural cells regulate TLR5-mediated mucosal adjuvant activity

    Get PDF
    Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin’s mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.Fil: Van Maele, Laurye. Institut Pasteur de Lille. Lille; Francia. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; FranciaFil: Fougeron, Delphine. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Janot, Laurent. University of OrlĂ©ans. OrlĂ©ans; Francia. Institut de Transgenose. Orleans; FranciaFil: Didierlaurent, A.. Imperial College of London. Londres; Reino UnidoFil: Cayet, D.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Tabareau, J.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Rumbo, MartĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Estudios InmunolĂłgicos y FisiopatolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios InmunolĂłgicos y FisiopatolĂłgicos; ArgentinaFil: Corvo Chamaillard, S.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Boulenoir, S.. Institut Pasteur de Lille. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Univ Lille Nord de France. Lille; FranciaFil: Jeffs, S. Imperial College of London. Londres; Reino UnidoFil: Vande Walle, L. Department of Medical Protein Research. Ghent; BĂ©lgica. University of Ghent; BĂ©lgicaFil: Lamkanfi, M.. Department of Medical Protein Research. Ghent; BĂ©lgica. University of Ghent; BĂ©lgicaFil: Lemoine, Y.. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Institut Pasteur de Lille. Lille; FranciaFil: Erard, F.. Institut de Transgenose. Orleans; Francia. University of OrlĂ©ans. OrlĂ©ans; FranciaFil: Hot, D.. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Institut Pasteur de Lille. Lille; FranciaFil: Hussell, Tracy. Imperial College of London. Londres; Reino Unido. University of Manchester; Reino UnidoFil: Ryffel, B.. Institut de Transgenose. Orleans; Francia. University of OrlĂ©ans. OrlĂ©ans; FranciaFil: Benecke, Arndt G.. Institut des Hautes Études Scientifiques and Centre National de la Recherche Scientifique; FranciaFil: Sirard, J.C.. Univ Lille Nord de France. Lille; Francia. Institut National de la SantĂ© et de la Recherche MĂ©dicale; Francia. Institut Pasteur de Lille. Lille; Franci

    Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model

    Get PDF
    Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties.Centro de InvestigaciĂłn y Desarrollo en CriotecnologĂ­a de AlimentosInstituto de Estudios InmunolĂłgicos y FisiopatolĂłgico

    Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth

    Get PDF
    The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the ‘sniffer’. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots

    The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    Get PDF
    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function

    Making waves: collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making

    Get PDF
    The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice. [Abstract copyright: Copyright © 2021 Elsevier Ltd. All rights reserved.

    Membrane anchoring stabilizes and favors secretion of New Delhi metallo-ÎČ-lactamase

    Get PDF
    Carbapenems, 'last-resort' ÎČ-lactam antibiotics, are inactivated by zinc-dependent metallo-ÎČ-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-ÎČ-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the bla[subscript NDM] gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.Kinship Foundation. Searle Scholars ProgramMassachusetts Institute of Technology. Department of Chemistr

    Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium

    Get PDF
    The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer’s patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as “immunosurveillance” receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines
    • 

    corecore