51 research outputs found

    Gridded birth and pregnancy datasets for Africa, Latin America and the Caribbean

    Get PDF
    Understanding the fine scale spatial distribution of births and pregnancies is crucial for informing planning decisions related to public health. This is especially important in lower income countries where infectious disease is a major concern for pregnant women and new-borns, as highlighted by the recent Zika virus epidemic. Despite this, the spatial detail of basic data on the numbers and distribution of births and pregnancies is often of a coarse resolution and difficult to obtain, with no co-ordination between countries and organisations to create one consistent set of subnational estimates. To begin to address this issue, under the framework of the WorldPop program, an open access archive of high resolution gridded birth and pregnancy distribution datasets for all African, Latin America and Caribbean countries has been created. Datasets were produced using the most recent and finest level census and official population estimate data available and are at a resolution of 30 arc seconds (approximately 1 km at the equator). All products are available through WorldPop

    Trust in Community-Engaged Research Partnerships: A Methodological Overview of Designing a Multisite Clinical and Translational Science Awards (CTSA) Initiative

    Get PDF
    Community-engaged research (CEnR) builds on the strengths of the Clinical and Translational Science Awards (CTSA) framework to address health in underserved and minority communities. There is a paucity of studies that identify the process from which trust develops in CEnR partnerships. This study responds to the need for empirical investigation of building and maintaining trust from a multistakeholder perspective. We conducted a multi-institutional pilot study using concept mapping with to better understand how trust, a critical outcome of CEnR partnerships, can act as “social capital.” Concept mapping was used to collect data from the three stakeholder groups community, health-care, and academic research partners across three CTSAs. Concept mapping is a mixed-methods approach that allows participants to brainstorm and identify factors that contribute to a concept and describe ways in which those factors relate to each other. This study offers important insights on developing an initial set of trust measures that can be used across CTSAs to understand differences and similarities in conceptualization of trust among key stakeholder groups, track changes in public trust in research, identify both positive and negative aspects of trust, identify characteristics that maintain trust, and inform the direction for future research

    Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa

    Get PDF
    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population

    Global holiday datasets for understanding seasonal human mobility and population dynamics

    No full text
    Public and school holidays have important impacts on population mobility and dynamics across multiple spatial and temporal scales, subsequently affecting the transmission dynamics of infectious diseases and many socioeconomic activities. However, worldwide data on public and school holidays for understanding their changes across regions and years have not been assembled into a single, open-source and multitemporal dataset. To address this gap, an open access archive of data on public and school holidays in 2010–2019 across the globe at daily, weekly, and monthly timescales was constructed. Airline passenger volumes across 90 countries from 2010 to 2018 were also assembled to illustrate the usage of the holiday data for understanding the changing spatiotemporal patterns of population movements

    Practical geospatial and sociodemographic predictors of human mobility

    No full text
    Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.</p

    Internal Migration Datasets

    No full text
    Estimated 5-year (2005-2010) internal human migration flows between subnational administrative units for every Plasmodium falciparum and Plasmodium vivax endemic country (WHO, 2015; http://www.who.int/malaria/publications/country-profiles/en/

    Mapping internal connectivity through human migration in malaria endemic countries

    No full text
    Human mobility continues to increase in terms of volumes and reach, producing growing global connectivity. This connectivity hampers efforts to eliminate infectious diseases such as malaria through reintroductions of pathogens, and thus accounting for it becomes important in designing global, continental, regional, and national strategies. Recent works have shown that census-derived migration data provides a good proxy for internal connectivity, in terms of relative strengths of movement between administrative units, across temporal scales. To support global malaria eradication strategy efforts, here we describe the construction of an open access archive of estimated internal migration flows in endemic countries built through pooling of census microdata. These connectivity datasets, described here along with the approaches and methods used to create and validate them, are available both through the WorldPop website and the WorldPop Dataverse Repository
    corecore