101 research outputs found

    Characterization of methicillin-resistant Staphylococcus aureus strains colonizing the nostrils of Spanish children

    Get PDF
    Objective: To characterize the Staphylococcus aureus strains colonizing healthy Spanish children. Methods: Between March and July 2018, 1876 Spanish children younger than 14 years attending primary healthcare centers were recruited from rural and urban areas. Staphylococcus aureus colonization of the anterior nostrils was analyzed. MecA and mecC genes, antibiotic susceptibility, and genotyping according to the spa were determined in all strains, and the following toxins were examined: Panton-Valentine leucocidin (pvl), toxic shock syndrome toxin (tst), and exfoliative toxins (eta, etb, etd). Multilocus sequence typing (MLST) and staphylococcal cassette chromosome (SCCmec) typing were performed on methicillin-resistant Staphylococcus aureus (MRSA) strains, as well as pulsed-field gel electrophoresis (PFGE). Results: 619 strains were isolated in 1876 children (33%), and 92% of them were sent for characterization to the Spanish National Centre of Microbiology (n = 572). Twenty (3.5%) of these strains were mecA-positive. Several spa types were detected among MRSA, being t002 the most frequently observed (30%), associating with SCCmec IVc. Among MSSA, 33% were positive for tst, while only 0.73% were positive for pvl. The 20 MRSA strains were negative for pvl, and 6 (30%) harbored the tst gene. Conclusions: methicillin-resistant Staphylococcus aureus nasal colonization in Spanish children is rare, with t002 being the most observed spa type, associated with SCCmec IVc. None of the MRSA strains produced pvl, but up to 30% of S. aureus strains were positive for tst

    A TMEFF2-regulated cell cycle derived gene signature is prognostic of recurrence risk in prostate cancer

    Get PDF
    Background: The clinical behavior of prostate cancer (PCa) is variable, and while the majority of cases remain indolent, 10% of patients progress to deadly forms of the disease. Current clinical predictors used at the time of diagnosis have limitations to accurately establish progression risk. Here we describe the development of a tumor suppressor regulated, cell-cycle gene expression based prognostic signature for PCa, and validate its independent contribution to risk stratification in several radical prostatectomy (RP) patient cohorts. Methods: We used RNA interference experiments in PCa cell lines to identify a gene expression based gene signature associated with Tmeff2, an androgen regulated, tumor suppressor gene whose expression shows remarkable heterogeneity in PCa. Gene expression was confirmed by qRT-PCR. Correlation of the signature with disease outcome (time to recurrence) was retrospectively evaluated in four geographically different cohorts of patients that underwent RP (834 samples), using multivariate logistical regression analysis. Multivariate analyses were adjusted for standard clinicopathological variables. Performance of the signature was compared to previously described gene expression based signatures using the SigCheck software. Results: Low levels of TMEFF2 mRNA significantly (p \u3c 0.0001) correlated with reduced disease-free survival (DFS) in patients from the Memorial Sloan Kettering Cancer Center (MSKCC) dataset. We identified a panel of 11 TMEFF2 regulated cell cycle related genes (TMCC11), with strong prognostic value. TMCC11 expression was significantly associated with time to recurrence after prostatectomy in four geographically different patient cohorts (2.9 ≤ HR ≥ 4.1; p ≤ 0.002), served as an independent indicator of poor prognosis in the four RP cohorts (1.96 ≤ HR ≥ 4.28; p ≤ 0.032) and improved the prognostic value of standard clinicopathological markers. The prognostic ability of TMCC11 panel exceeded previously published oncogenic gene signatures (p = 0.00017). Conclusions: This study provides evidence that the TMCC11 gene signature is a robust independent prognostic marker for PCa, reveals the value of using highly heterogeneously expressed genes, like Tmeff2, as guides to discover prognostic indicators, and suggests the possibility that low Tmeff2 expression marks a distinct subclass of PCa

    Breast cancer PAM50 signature: correlation and concordance between RNA-Seq and digital multiplexed gene expression technologies in a triple negative breast cancer series

    Get PDF
    [Background]: Full RNA-Seq is a fundamental research tool for whole transcriptome analysis. However, it is too costly and time consuming to be used in routine clinical practice. We evaluated the transcript quantification agreement between RNA-Seq and a digital multiplexed gene expression platform, and the subtype call after running the PAM50 assay in a series of breast cancer patients classified as triple negative by IHC/FISH. The goal of this study is to analyze the concordance between both expression platforms overall, and for calling PAM50 triple negative breast cancer intrinsic subtypes in particular.[Results]: The analyses were performed in paraffin-embedded tissues from 96 patients recruited in a multicenter, prospective, non-randomized neoadjuvant triple negative breast cancer trial (NCT01560663). Pre-treatment core biopsies were obtained following clinical practice guidelines and conserved as FFPE for further RNA extraction. PAM50 was performed on both digital multiplexed gene expression and RNA-Seq platforms. Subtype assignment was based on the nearest centroid classification following this procedure for both platforms and it was concordant on 96% of the cases (N = 96). In four cases, digital multiplexed gene expression analysis and RNA-Seq were discordant. The Spearman correlation to each of the centroids and the risk of recurrence were above 0.89 in both platforms while the agreement on Proliferation Score reached up to 0.97. In addition, 82% of the individual PAM50 genes showed a correlation coefficient > 0.80.[Conclusions]: In our analysis, the subtype calling in most of the samples was concordant in both platforms and the potential discordances had reduced clinical implications in terms of prognosis. If speed and cost are the main driving forces then the preferred technique is the digital multiplexed platform, while if whole genome patterns and subtype are the driving forces, then RNA-Seq is the preferred method.M.M was supported by two research grants from Ministry of Economy and Competitiveness ISCIII-FIS grants (PI 12/02684): “Predictores genómicos de respuesta a la quimioterapia neoadyuvante con docetaxel-carboplatino en pacientes con cáncer de mama triple negativo”/“Genomic predictors of response to neoadjuvant chemotherapy with docetaxel-carboplatin in patients with triple negative breast cancer”; and (PI 15/00117): “Cáncer de mama triple negative: Predicción de respuesta a docetaxel-carboplatino neoadyuvante mediante caracterización de TILs y firmas inmunes basadas en secuenciación masiva de RNA”/” Triple negative breast cancer: Prediction of response to neoadjuvant docetaxel-carboplatin by characterization of TILs and immune signatures based on massive RNA sequencing”. C.M.P was supported by funds from the NCI Breast SPORE program (P50-CA58223).Peer reviewe

    Interactions of Kid–Kis toxin–antitoxin complexes with the parD operator-promoter region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid–Kis oligomers

    Get PDF
    The parD operon of Escherichia coli plasmid R1 encodes a toxin–antitoxin system, which is involved in plasmid stabilization. The toxin Kid inhibits cell growth by RNA degradation and its action is neutralized by the formation of a tight complex with the antitoxin Kis. A fascinating but poorly understood aspect of the kid–kis system is its autoregulation at the transcriptional level. Using macromolecular (tandem) mass spectrometry and DNA binding assays, we here demonstrate that Kis pilots the interaction of the Kid–Kis complex in the parD regulatory region and that two discrete Kis-binding regions are present on parD. The data clearly show that only when the Kis concentration equals or exceeds the Kid concentration a strong cooperative effect exists between strong DNA binding and Kid(2)–Kis(2)–Kid(2)–Kis(2) complex formation. We propose a model in which transcriptional repression of the parD operon is tuned by the relative molar ratio of the antitoxin and toxin proteins in solution. When the concentration of the toxin exceeds that of the antitoxin tight Kid(2)–Kis(2)–Kid(2) complexes are formed, which only neutralize the lethal activity of Kid. Upon increasing the Kis concentration, (Kid(2)–Kis(2))(n) complexes repress the kid–kis operon

    A Toxin–Antitoxin System Promotes the Maintenance of an Integrative Conjugative Element

    Get PDF
    SXT is an integrative and conjugative element (ICE) that confers resistance to multiple antibiotics upon many clinical isolates of Vibrio cholerae. In most cells, this ∼100 Kb element is integrated into the host genome in a site-specific fashion; however, SXT can excise to form an extrachromosomal circle that is thought to be the substrate for conjugative transfer. Daughter cells lacking SXT can theoretically arise if cell division occurs prior to the element's reintegration. Even though ∼2% of SXT-bearing cells contain the excised form of the ICE, cells that have lost the element have not been detected. Here, using a positive selection-based system, SXT loss was detected rarely at a frequency of ∼1×10−7. As expected, excision appears necessary for loss, and factors influencing the frequency of excision altered the frequency of SXT loss. We screened the entire 100 kb SXT genome and identified two genes within SXT, now designated mosA and mosT (for maintenance of SXT Antitoxin and Toxin), that promote SXT stability. These two genes, which lack similarity to any previously characterized genes, encode a novel toxin-antitoxin pair; expression of mosT greatly impaired cell growth and mosA expression ameliorated MosT toxicity. Factors that promote SXT excision upregulate mosAT expression. Thus, when the element is extrachromosomal and vulnerable to loss, SXT activates a TA module to minimize the formation of SXT-free cells

    Choice of the initial antiretroviral treatment for HIV-positive individuals in the era of integrase inhibitors

    Get PDF
    BACKGROUND: We aimed to describe the most frequently prescribed initial antiretroviral therapy (ART) regimens in recent years in HIV-positive persons in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) and to investigate factors associated with the choice of each regimen. METHODS: We analyzed initial ART regimens prescribed in adults participating in CoRIS from 2014 to 2017. Only regimens prescribed in >5% of patients were considered. We used multivariable multinomial regression to estimate Relative Risk Ratios (RRRs) for the association between sociodemographic and clinical characteristics and the choice of the initial regimen. RESULTS: Among 2874 participants, abacavir(ABC)/lamivudine(3TC)/dolutegavir(DTG) was the most frequently prescribed regimen (32.1%), followed by tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC)/elvitegravir(EVG)/cobicistat(COBI) (14.9%), TDF/FTC/rilpivirine (RPV) (14.0%), tenofovir alafenamide (TAF)/FTC/EVG/COBI (13.7%), TDF/FTC+DTG (10.0%), TDF/FTC+darunavir/ritonavir or darunavir/cobicistat (bDRV) (9.8%) and TDF/FTC+raltegravir (RAL) (5.6%). Compared with ABC/3TC/DTG, starting TDF/FTC/RPV was less likely in patients with CD4100.000 copies/mL. TDF/FTC+DTG was more frequent in those with CD4100.000 copies/mL. TDF/FTC+RAL and TDF/FTC+bDRV were also more frequent among patients with CD4<200 cells//muL and with transmission categories other than men who have sex with men. Compared with ABC/3TC/DTG, the prescription of other initial ART regimens decreased from 2014-2015 to 2016-2017 with the exception of TDF/FTC+DTG. Differences in the choice of the initial ART regimen were observed by hospitals' location. CONCLUSIONS: The choice of initial ART regimens is consistent with Spanish guidelines' recommendations, but is also clearly influenced by physician's perception based on patient's clinical and sociodemographic variables and by the prescribing hospital location

    Genome-Wide Identification of Alternative Splice Forms Down-Regulated by Nonsense-Mediated mRNA Decay in Drosophila

    Get PDF
    Alternative mRNA splicing adds a layer of regulation to the expression of thousands of genes in Drosophila melanogaster. Not all alternative splicing results in functional protein; it can also yield mRNA isoforms with premature stop codons that are degraded by the nonsense-mediated mRNA decay (NMD) pathway. This coupling of alternative splicing and NMD provides a mechanism for gene regulation that is highly conserved in mammals. NMD is also active in Drosophila, but its effect on the repertoire of alternative splice forms has been unknown, as has the mechanism by which it recognizes targets. Here, we have employed a custom splicing-sensitive microarray to globally measure the effect of alternative mRNA processing and NMD on Drosophila gene expression. We have developed a new algorithm to infer the expression change of each mRNA isoform of a gene based on the microarray measurements. This method is of general utility for interpreting splicing-sensitive microarrays and high-throughput sequence data. Using this approach, we have identified a high-confidence set of 45 genes where NMD has a differential effect on distinct alternative isoforms, including numerous RNA–binding and ribosomal proteins. Coupled alternative splicing and NMD decrease expression of these genes, which may in turn have a downstream effect on expression of other genes. The NMD–affected genes are enriched for roles in translation and mitosis, perhaps underlying the previously observed role of NMD factors in cell cycle progression. Our results have general implications for understanding the NMD mechanism in fly. Most notably, we found that the NMD–target mRNAs had significantly longer 3′ untranslated regions (UTRs) than the nontarget isoforms of the same genes, supporting a role for 3′ UTR length in the recognition of NMD targets in fly

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF
    corecore