162 research outputs found

    A MeerKAT, e-MERLIN, H.E.S.S. and Swift search for persistent and transient emission associated with three localised FRBs

    Get PDF

    A deep spectromorphological study of the γ\gamma-ray emission surrounding the young massive stellar cluster Westerlund 1

    Get PDF
    Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy is a prime candidate for studying this hypothesis. While the very-high-energy γ\gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. We aim to identify the physical processes responsible for the γ\gamma-ray emission around Westerlund 1 and thus to better understand the role of massive stellar clusters in the acceleration of Galactic CRs. Using 164 hours of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the γ\gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. We detected large-scale (2\sim 2^\circ diameter) γ\gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with γ\gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and is uniform across the entire source region. We did not find a clear correlation of the γ\gamma-ray emission with gas clouds as identified through H I and CO observations. We conclude that, of the known objects within the region, only Westerlund 1 can explain the bulk of the γ\gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable, and discussed in detail. (abridged)Comment: 15 pages, 9 figures. Corresponding authors: L. Mohrmann, S. Ohm, R. Rauth, A. Specoviu

    Detection of extended TeV emission around the Geminga pulsar with H.E.S.S.

    Get PDF
    Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs

    Astronomy outreach in Namibia : H.E.S.S. and beyond

    Get PDF
    Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting very-high-energy gamma rays from astronomical objects. The fascinating stories behind many of them are featured regularly in the "Source of the Month", a blog-like format intended for the general public with more than 170 features to date. In addition to other online communication via social media, H.E.S.S. outreach activities have been covered locally, e.g. through 'open days' and guided tours on the site itself. An overview of the H.E.S.S. outreach activities are presented in this contribution, along with discussions relating to the current landscape of astronomy outreach and education in Namibia. There has also been significant activity in the country in recent months, whereby astronomy is being used to further sustainable development via human capacity-building. Finally, as we take into account the future prospects of radio astronomy in the country, momentum for a wider range of astrophysics research is clearly building — this presents a great opportunity for the astronomy community to come together to capitalise on this movement and support astronomy outreach, with the overarching aim to advance sustainable development in Namibia

    Detection of new Extreme BL Lac objects with H.E.S.S. and Swift XRT

    Get PDF
    Extreme high synchrotron peaked blazars (EHBLs) are amongst the most powerful accelerators found in nature. Usually the synchrotron peak frequency of an EHBL is above 1017^{17} Hz, i.e., lies in the range of medium to hard X-rays making them ideal sources to study particle acceleration and radiative processes. EHBL objects are commonly observed at energies beyond several TeV, making them powerful probes of gamma-ray absorption in the intergalactic medium. During the last decade, several attempts have been made to increase the number of EHBL detected at TeV energies and probe their spectral characteristics. Here we report new detections of EHBLs in the TeV energy regime, each at a redshift of less than 0.2, by the High Energy Stereoscopic System (H.E.S.S.). Also, we report on X-ray observations of these EHBLs candidates with Swift-XRT. In conjunction with the very high energy observations, this allows us to probe the radiation mechanisms and the underlying particle acceleration processes

    Search for enhanced TeV gamma ray emission from Giant Molecular Clouds using H.E.S.S.

    Get PDF
    Cosmic Ray (CR) interactions with the dense gas inside Giant Molecular Clouds (GMCs) produce neutral pions, which in turn decay into gamma rays. Thus, the gamma ray emission from GMCs is a direct tracer of the cosmic ray density and the matter density inside the clouds. Detection of enhanced TeV emission from GMCs, i.e., an emission significantly larger than what is expected from the average Galactic cosmic rays illuminating the cloud, can imply a variation in the local cosmic ray density, due to, for example, the presence of a recent accelerator in proximity to the cloud. Such gamma-ray observations can be crucial in probing the cosmic ray distribution across our Galaxy, but are complicated to perform with present generation Imaging Atmospheric Cherenkov Telescopes (IACTs). These studies require differentiating between the strong cosmic-ray induced background, the large scale diffuse emission, and the emission from the clouds, which is difficult to the small field of view of present generation IACTs. In this contribution, we use H.E.S.S. data collected over 16 years to search for TeV emission from GMCs in the inner molecular galacto-centric ring of our Galaxy. We implement a 3D FoV likelihood technique, and simultaneously model the hadronic background, the galactic diffuse emission and the emission expected from known VHE sources to probe for excess TeV gamma ray emission from GMCs

    Is PKS 0625-354 another variable TeV active galactic nucleus?

    Get PDF
    The majority of the active galactic nuclei (AGN) detected at very-high-energies above 100 GeV belong to the class of blazars with a small angle between the jet-axis and the line-of-sight. Only about 10 percent of the gamma-ray AGN are objects with a larger viewing angle resulting in a smaller Doppler boosting of the emission. Originally, it was believed that gamma-ray emission can only be observed from blazars and those are variable in its brightness. Instead, the last years have shown that non-blazar active galaxies also show a fascinating variability behaviour which provide important new insights into the physical processes responsible for the gamma-ray production and especially for flaring events. Here, we report on the observation of gamma-ray variability of the active galaxy PKS 0625−354 detected with the H.E.S.S. telescopes in November 2018. The classification of PKS 0625−354 is a still matter of debate. The H.E.S.S. measurements were performed as part of a flux observing program and showed in the first night of the observation a detection of the object with > 5σ. A denser observation campaign followed for the next nine nights resulting in a decrease of the gamma-ray flux. Those observations were accompanied with Swift in the X-ray and UV/optical band allowing for the reconstruction of a multi-band broad-band spectral energy distribution. We will discuss the implications of the gamma-ray variability of the object

    Revisiting the PeVatron candidate MGRO J1908+06 with an updated H.E.S.S. analysis

    Get PDF
    Detecting and studying galactic gamma-ray sources emitting very-high energy photons sheds light on the acceleration and propagation of cosmic rays presumably created in these sources. Currently, there are few sources emitting photons with energies exceeding 100 TeV. In this work we revisit the unidentified source MGRO J1908+06, initially detected by Milagro, using an updated H.E.S.S. dataset and analysis pipeline. The vicinity of the source contains a supernova remnant and pulsars as well as molecular clouds. This makes the identification of the primary source(s) of galactic cosmic rays as well as the nature of the gamma-ray emission challenging, especially in light of the recent HAWC and LHAASO detection of the high energy tail of its spectrum. Exploiting the better angular resolution as compared to particle detectors, we investigate the morphology of the source as well as its spectral properties

    Deep observations of Kepler's SNR with H.E.S.S.

    Get PDF
    Kepler’s supernova remnant (SNR) which is produced by the most recent naked-eye supernova in our Galaxy is one of the best studied SNRs, but its gamma-ray detection has eluded us so far. Observations with modern imaging atmospheric Cherenkov telescopes (IACT) have enlarged the knowledge about nearby SNRs with ages younger than 500 years by establishing Cassiopeia A and Tycho’s SNRs as very high energy (VHE) gamma-ray sources and setting a lower limit on the distance to Kepler’s SNR. This SNR is significantly more distant than the other two and expected to be one of the faintest gamma-ray sources within reach of the IACT arrays of this generation. We report strong evidence for a VHE signal from Kepler’s SNR based on deep observations of the High Energy Stereoscopic System (H.E.S.S.) with an exposure of 152 hours, including 122 hours accumulated in 2017-2020. We further discuss implications of this result for cosmic-ray acceleration in young SNRs

    Science verification of the new FlashCam-based camera in the 28 m telescope of H.E.S.S.

    Get PDF
    In October 2019 the central 28 m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the medium-sized telescopes of the Cherenkov Telescope Array (CTA). We report here on the results of the science verification program that has been performed after commissioning of the new camera, to show that the camera and software pipelines are working up to expectations
    corecore