17 research outputs found

    Desarrollo de estrategias basadas en técnicas moleculares y test farmacológicos para la implantación de protocolos de medicina personalizada en el tratamiento del mieloma múltiple

    Get PDF
    El Mieloma Múltiple (MM) es la segunda neoplasia hematológica más frecuente y se caracteriza por la proliferación descontrolada de células plasmáticas en la médula ósea. El reciente desarrollo de nuevas terapias ha permitido aumentar las opciones terapéuticas y mejorar considerablemente las expectativas de vida de estos pacientes, aunque todavía es incurable. La marcada variabilidad en la respuesta a los tratamientos y en la supervivencia los pacientes ponen de manifiesto la necesidad de identificar nuevos factores pronóstico y predictores de respuesta al tratamiento que permitan encontrar la mejor aproximación terapéutica para cada individuo, de manera personalizada. En este contexto, la reciente aparición de técnicas de secuenciación masiva del ADN como la secuenciación de nueva generación ha permitido conocer muy en profundidad las enormes variabilidades genéticas que presentan las células tumorales de mieloma, tanto entre pacientes como dentro de un mismo paciente. Sin embargo, mayores esfuerzos deber realizarse para poder encontrar nuevas dianas terapéuticas y biomarcadores de respuesta al tratamiento, ya que actualmente la elección de este se basa en la pericia clínica del médico y no en base al perfil mutacional del tumor.

    A novel deep targeted sequencing method for minimal residual disease monitoring in acute myeloid leukemia

    Get PDF
    A high proportion of patients with acute myeloid leukemia who achieve minimal residual disease negative status ultimately relapse because a fraction of pathological clones remains undetected by standard methods. We designed and validated a high-throughput sequencing method for minimal residual disease assessment of cell clonotypes with mutations of NPM1, IDH1/2 and/or FLT3-single nucleotide variants. For clinical validation, 106 follow-up samples from 63 patients in complete remission were studied by sequencing, evaluating the level of mutations detected at diagnosis. The predictive value of minimal residual disease status by sequencing, multiparameter flow cytometry, or quantitative polymerase chain reaction analysis was determined by survival analysis. The sequencing method achieved a sensitivity of 10-4 for single nucleotide variants and 10-5 for insertions/deletions and could be used in acute myeloid leukemia patients who carry any mutation (86% in our diagnostic data set). Sequencing-determined minimal residual disease positive status was associated with lower disease-free survival (hazard ratio 3.4, P=0.005) and lower overall survival (hazard ratio 4.2, P<0.001). Multivariate analysis showed that minimal residual disease positive status determined by sequencing was an independent factor associated with risk of death (hazard ratio 4.54, P=0.005) and the only independent factor conferring risk of relapse (hazard ratio 3.76, P=0.012). This sequencing-based method simplifies and standardizes minimal residual disease evaluation, with high applicability in acute myeloid leukemia. It is also an improvement upon flow cytometry- and quantitative polymerase chain reaction-based prediction of outcomes of patients with acute myeloid leukemia and could be incorporated in clinical settings and clinical trials.This study was supported by the Subdirección General de Investigación Sanitaria (Instituto de Salud Carlos III, Spain) grants PI13/02387 and PI16/01530, and the CRIS against Cancer foundation grant 2014/0120. ML holds a postdoctoral fellowship of the Spanish Ministry of Economy and Competitiveness (FPDI-2013- 16409). PRP holds a postdoctoral fellowship of the Spanish Instituto de Salud Carlos III: Contrato Predoctoral de Formación en Investigación en Salud i-PFIS (IFI 14/00008).S

    Novel deep targeted sequencing method for minimal residual disease monitoring in acute myeloid leukemia

    Get PDF
    A high proportion of patients with acute myeloid leukemia who achieve minimal residual disease (MRD) negative status ultimately relapse because a fraction of pathological clones remains undetected by standard methods. We designed and validated a high-throughput sequencing method for MRD assessment of cell clonotypes with mutations of NPM1, IDH1/2 and/or FLT3-SNVs. For clinical validation, 106 follow-up samples from 63 patients in complete remission were studied by NGS, evaluating the level of mutations detected at diagnosis. The predictive value of MRD status by NGS, multiparameter flow cytometry, or quantitative PCR was determined by survival analysis. The method achieved a sensitivity of 10-4 for SNV mutations and 10-5 for insertions/deletions and could be used in acute myeloid leukemia patients who carry any mutation (86% in our diagnosis data set). NGS-determined MRD positive status was associated with lower disease-free survival (hazard ratio [HR] 3.4, p=0.005) and lower overall survival (HR 4.2, p<0.001). Multivariate analysis showed that MRD positive status by NGS was an independent factor associated with risk of death (HR 4.54, p =0.005) and the only independent factor conferring risk of relapse (HR 3.76, p =0.012). This NGS based method simplifies and standardizes MRD evaluation, with high applicability in acute myeloid leukemia. It also improves upon flow cytometry and quantitative PCR to predict acute myeloid leukemia outcome and could be incorporated in clinical settings and clinical trials.This study was supported by the Subdirección General de Investigación Sanitaria (Instituto de Salud Carlos III, Spain) grants PI13/02387 and PI16/01530, and the CRIS against Cancer foundation grant 2014/0120. M.L. holds a postdoctoral fellowship of the Spanish Ministry of Economy and Competitiveness (FPDI-2013-16409). P.R.P. holds a postdoctoral fellowship of the Spanish of Instituto de Salud Carlos III: Contrato Predoctoral de Formación en Investigación en Salud i-PFIS (IFI 14/00008).S

    Personalized monitoring of circulating tumor DNA with a specific signature of trackable mutations after chimeric antigen receptor T-cell therapy in follicular lymphoma patients

    Get PDF
    BackgroundCART therapy has produced a paradigm shift in the treatment of relapsing FL patients. Strategies to optimize disease surveillance after these therapies are increasingly necessary. This study explores the potential value of ctDNA monitoring with an innovative signature of personalized trackable mutations.MethodEleven FL patients treated with anti-CD19 CAR T-cell therapy were included. One did not respond and was excluded. Genomic profiling was performed before starting lymphodepleting chemotherapy to identify somatic mutations suitable for LiqBio-MRD monitoring. The dynamics of the baseline mutations (4.5 per patient) were further analyzed on 59 cfDNA follow-up samples. PET/CT examinations were performed on days +90, +180, +365, and every six months until disease progression or death.ResultsAfter a median follow-up of 36 months, all patients achieved a CR as the best response. Two patients progressed. The most frequently mutated genes were CREBBP, KMT2D and EP300. Simultaneous analysis of ctDNA and PET/CT was available for 18 time-points. When PET/CT was positive, two out of four ctDNA samples were LiqBio-MRD negative. These two negative samples corresponded to women with a unique mesenteric mass in two evaluations and never relapsed. Meanwhile, 14 PET/CT negative images were mutation-free based on our LiqBio-MRD analysis (100%). None of the patients had a negative LiqBio-MRD test by day +7. Interestingly, all durably responding patients had undetectable ctDNA at or around three months after infusion. Two patients presented discordant results by PET/CT and ctDNA levels. No progression was confirmed in these cases. All the progressing patients were LiqBio-MRD positive before progression.ConclusionThis is a proof-of-principle for using ctDNA to monitor response to CAR T-cell therapy in FL. Our results confirm that a non-invasive liquid biopsy MRD analysis may correlate with response and could be used to monitor response. Harmonized definitions of ctDNA molecular response and pinpointing the optimal timing for assessing ctDNA responses are necessary for this setting. If using ctDNA analysis, we suggest restricting follow-up PET/CT in CR patients to a clinical suspicion of relapse, to avoid false-positive results

    Real-life disease monitoring in follicular lymphoma patients using liquid biopsy ultra-deep sequencing and PET/CT

    Get PDF
    In the present study, we screened 84 Follicular Lymphoma patients for somatic mutations suitable as liquid biopsy MRD biomarkers using a targeted next-generation sequencing (NGS) panel. We found trackable mutations in 95% of the lymph node samples and 80% of the liquid biopsy baseline samples. Then, we used an ultra-deep sequencing approach with 2 · 10−4 sensitivity (LiqBio-MRD) to track those mutations on 151 follow-up liquid biopsy samples from 54 treated patients. Positive LiqBio-MRD at first-line therapy correlated with a higher risk of progression both at the interim evaluation (HRINT 11.0, 95% CI 2.10–57.7, p = 0.005) and at the end of treatment (HREOT, HR 19.1, 95% CI 4.10–89.4, p < 0.001). Similar results were observed by PET/CT Deauville score, with a median PFS of 19 months vs. NR (p < 0.001) at the interim and 13 months vs. NR (p < 0.001) at EOT. LiqBio-MRD and PET/CT combined identified the patients that progressed in less than two years with 88% sensitivity and 100% specificity. Our results demonstrate that LiqBio-MRD is a robust and non-invasive approach, complementary to metabolic imaging, for identifying FL patients at high risk of failure during the treatment and should be considered in future response-adapted clinical trials.This study has been funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union through the projects PI21/00314, PI19/01430, PI19/01518 and PI18/00295, PTQ2020-011372, CP19/00140, CP22/00082, Doctorado industrial CAM IND2020/TIC-17402 and CRIS cancer foundation

    Myc-Related Mitochondrial Activity as a Novel Target for Multiple Myeloma

    Get PDF
    Mitochondria are involved in the development and acquisition of a malignant phenotype in hematological cancers. Recently, their role in the pathogenesis of multiple myeloma (MM) has been suggested to be therapeutically explored. MYC is a master regulator of b-cell malignancies such as multiple myeloma, and its activation is known to deregulate mitochondrial function. We investigated the impact of mitochondrial activity on the distinct entities of the disease and tested the efficacy of the mitochondrial inhibitor, tigecycline, to overcome MM proliferation. COXII expression, COX activity, mitochondrial mass, and mitochondrial membrane potential demonstrated a progressive increase of mitochondrial features as the disease progresses. In vitro and in vivo therapeutic targeting using the mitochondrial inhibitor tigecycline showed promising efficacy and cytotoxicity in monotherapy and combination with the MM frontline treatment bortezomib. Overall, our findings demonstrate how mitochondrial activity emerges in MM transformation and disease progression and the efficacy of therapies targeting these novel vulnerabilities

    NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial

    Get PDF
    Simple Summary Multiple Myeloma (MM) is considered an incurable chronic disease, which prognosis depends on the presence of different genomic alterations. To accomplish a complete molecular diagnosis in a single essay, we have designed and validated a capture-based NGS approach to reliably identify pathogenic mutations (SNVs and indels), genomic alterations (CNVs and chromosomic translocations), and IGH rearrangements. We have observed a good correlation of the results obtained using our capture panel with data obtained by both FISH and WES techniques. In this study, the molecular classification performed using our approach was significantly associated with the stratification and outcome of MM patients. Additionally, this panel has been proven to detect specific IGH rearrangements that could be used as biomarkers in patient follow-ups through minimal residual disease (MRD) assays. In conclusion, we think that MM patients could benefit from the use of this capture-based NGS approach with a more accurate, single-essay molecular diagnosis. Next-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements. The panel was validated using a cohort of 149 MM patients enrolled in the GEM2012MENOS65 clinical trial. The results showed great global accuracy, with positive and negative predictive values close to 90% when compared with available data from fluorescence in situ hybridization and whole-exome sequencing. While the treatments used in the clinical trial showed high efficacy, patients defined as high-risk by the panel had shorter progression-free survival (p = 0.0015). As expected, the mutational status of TP53 was significant in predicting patient outcomes (p = 0.021). The NGS panel also efficiently detected clonal IGH rearrangements in 81% of patients. In conclusion, molecular karyotyping using a targeted NGS panel can identify relevant prognostic chromosomal abnormalities and translocations for the clinical management of MM patients

    Pathogenetic and Prognostic Implications of Increased Mitochondrial Content in Multiple Myeloma

    Get PDF
    Many studies over the last 20 years have investigated the role of mitochondrial DNA (mtDNA) alterations in carcinogenesis. However, the status of the mtDNACN in MM and its implication in the pathogenesis of the disease remains unclear. We examined changes in plasma cell mtDNACN across different stages of MM by applying RT-PCR and high-throughput sequencing analysis. We observed a significant increase in the average mtDNACN in myeloma cells compared with healthy plasma cells (157 vs. 40 copies; p = 0.02). We also found an increase in mtDNACN in SMM and newly diagnosed MM (NDMM) paired samples and in consecutive relapses in the same patient. Survival analysis revealed the negative impact of a high mtDNACN in progression-free survival in NDMM (p = 0.005). Additionally, we confirmed the higher expression of mitochondrial biogenesis regulator genes in myeloma cells than in healthy plasma cells and we detected single nucleotide variants in several genes involved in mtDNA replication. Finally, we found that there was molecular similarity between “rapidly-progressing SMM” and MM regarding mtDNACN. Our data provide evidence that malignant transformation of myeloma cells involves the activation of mitochondrial biogenesis, resulting in increased mtDNA levels, and highlights vulnerabilities and potential therapeutic targets in the treatment of MM. Accordingly, mtDNACN tracking might guide clinical decision-making and management of complex entities such as high-risk SMM
    corecore