688 research outputs found

    Ins and Outs of Cerebellar Modules

    Get PDF
    The modular concept of cerebellar connections has been advocated in the lifetime work of Jan Voogd. In this concept, a cerebellar module is defined as the conglomerate of one or multiple and non-adjacent, parasagittally arranged zones of Purkinje cells, their specific projection to a well-defined region of the cerebellar nuclei, and the climbing fiber input to these zones by a well-defined region of the inferior olivary complex. The modular organization of these olivo-cortico-nuclear connections is further exemplified by matching reciprocal connections between inferior olive and cerebellar nuclei. Because the different regions of the cerebellar nuclei show highly specific output patterns, cerebellar modules have been suggested to constitute functional entities. This idea is strengthened by the observation that anatomically defined modules adhere to the distribution of chemical markers in the cerebellar cortex suggesting that modules not only differ in their input and output relations but also may differ in operational capabilities. Here, I will briefly review some recent data on the establishment of cerebellar modules in rats. Furthermore, some evidence will be shown suggesting that the other main afferent system (i.e., mossy fibers), at least to some extent, also adheres to the modular organization. Finally, using retrograde transneuronal tracing with rabies virus, some evidence will be provided that several cerebellar modules may be involved in the control of individual muscles

    Thermal fluctuations and longitudinal relaxation of single-domain magnetic particles at elevated temperatures

    Full text link
    We present numerical and analytical results for the swiching times of magnetic nanoparticles with uniaxial anisotropy at elevated temperatures, including the vicinity of T_c. The consideration is based in the Landau-Lifshitz-Bloch equation that includes the relaxation of the magnetization magnitude M. The resulting switching times are shorter than those following from the naive Landau-Lifshitz equation due to (i) additional barrier lowering because of the reduction of M at the barrier and (ii) critical divergence of the damping parameters.Comment: 4 PR pages, 1 figur

    The Swiss Board Directors Network in 2009

    Get PDF
    We study the networks formed by the directors of the most important Swiss boards and the boards themselves for the year 2009. The networks are obtained by projection from the original bipartite graph. We highlight a number of important statistical features of those networks such as degree distribution, weight distribution, and several centrality measures as well as their interrelationships. While similar statistics were already known for other board systems, and are comparable here, we have extended the study with a careful investigation of director and board centrality, a k-core analysis, and a simulation of the speed of information propagation and its relationships with the topological aspects of the network such as clustering and link weight and betweenness. The overall picture that emerges is one in which the topological structure of the Swiss board and director networks has evolved in such a way that special actors and links between actors play a fundamental role in the flow of information among distant parts of the network. This is shown in particular by the centrality measures and by the simulation of a simple epidemic process on the directors network.Comment: Submitted to The European Physical Journal

    Are inhaled mRNA vaccines safe and effective? A review of preclinical studies

    Get PDF
    Introduction: Injected mRNA vaccines have been proven effective and safe in the SARS-CoV-2 pandemic. Using the machinery of the cell, mRNA vaccines translate into an antigen, which triggers an adaptive immune response. The effectiveness of intramuscular administered mRNA vaccines wanes in the months post-vaccination, which makes frequent booster administrations necessary. To make booster administration easier and increase efficacy, pulmonary administration could be investigated. The aim of this literature study was therefore to review the published preclinical (animal) studies on the safety and efficacy of pulmonary administered mRNA vaccines. Areas covered: We first provide background information on mRNA vaccines and immunological mechanisms of vaccination. Thereafter, we provide an evaluation of published animal studies, in which mRNA vaccines (or mRNA containing nanoparticles) were delivered into the lungs. We covered the following areas: biodistribution, cellular uptake, immune response, protection, and safety. All relevant papers were found using PubMed/MEDLINE database. Expert opinion: In our opinion, head-to-head comparison studies examining the safety and efficacy of intramuscular injected and pulmonary administered liquid mRNA vaccines should be performed first. When pulmonary delivered mRNA vaccines are shown to be effective and safe, inhalable dry powder formulations should be engineered. Finally, the tolerability of patients with respiratory diseases should be considered

    Gene therapy strategies for idiopathic pulmonary fibrosis:recent advances, current challenges, and future directions

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic disease in which the lungs become irreversibly scarred, leading to declining lung function. As currently available drugs do not cure IPF, there remains a great medical need for more effective treatments. Perhaps this need could be addressed by gene therapies, which offer powerful and versatile ways to attenuate a wide range of processes involved in fibrosis. Despite the potential benefits of gene therapy, no one has reviewed the current state of knowledge regarding its application for treating IPF. We therefore analyzed publications that reported the use of gene therapies to treat pulmonary fibrosis in animals, as clinical studies have not been published yet. In this review, we first provide an introduction on the pathophysiology of IPF and the most well-established gene therapy approaches. We then present a comprehensive evaluation of published animal studies, after which we provide recommendations for future research to address challenges with respect to the selection and use of animal models as well as the development of delivery vectors and dosage forms. Addressing these considerations will bring gene therapies one step closer to clinical testing and thus closer to patients

    Host Determinant Residue Lysine 627 Lies on the Surface of a Discrete, Folded Domain of Influenza Virus Polymerase PB2 Subunit

    Get PDF
    Understanding how avian influenza viruses adapt to human hosts is critical for the monitoring and prevention of future pandemics. Host specificity is determined by multiple sites in different viral proteins, and mutation of only a limited number of these sites can lead to inter-species transmission. Several of these sites have been identified in the viral polymerase, the best characterised being position 627 in the PB2 subunit. Efficient viral replication at the relatively low temperature of the human respiratory tract requires lysine 627 rather than the glutamic acid variant found systematically in avian viruses. However, the molecular mechanism by which any of these host specific sites determine host range are unknown, although adaptation to host factors is frequently evoked. We used ESPRIT, a library screening method, to identify a new PB2 domain that contains a high density of putative host specific sites, including residue 627. The X-ray structure of this domain (denoted the 627-domain) exhibits a novel fold with the side-chain of Lys627 solvent exposed. The structure of the K627E mutated domain shows no structural differences but the charge reversal disrupts a striking basic patch on the domain surface. Five other recently proposed host determining sites of PB2 are also located on the 627-domain surface. The structure of the complete C-terminal region of PB2 comprising the 627-domain and the previously identified NLS-domain, which binds the host nuclear import factor importin alpha, was also determined. The two domains are found to pack together with a largely hydrophilic interface. These data enable a three-dimensional mapping of approximately half of PB2 sites implicated in cross-species transfer onto a single structural unit. Their surface location is consistent with roles in interactions with other viral proteins or host factors. The identification and structural characterization of these well-defined PB2 domains will help design experiments to elucidate the effects of mutations on polymerase–host factor interactions

    Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches

    Get PDF
    Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (KD). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.

    Silencing Heat Shock Protein 47 (HSP47) in Fibrogenic Precision-Cut Lung Slices:A Surprising Lack of Effects on Fibrogenesis?

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic disease that is characterized by the excessive deposition of scar tissue in the lungs. As currently available treatments are unable to restore lung function in patients, there is an urgent medical need for more effective drugs. Developing such drugs, however, is challenging because IPF has a complex pathogenesis. Emerging evidence indicates that heat shock protein 47 (HSP47), which is encoded by the gene Serpinh1, may be a suitable therapeutic target as it is required for collagen synthesis. Pharmacological inhibition or knockdown of HSP47 could therefore be a promising approach to treat fibrosis. The objective of this study was to assess the therapeutic potential of Serpinh1-targeting small interfering RNA (siRNA) in fibrogenic precision-cut lung slices prepared from murine tissue. To enhance fibrogenesis, slices were cultured for up to 144 h with transforming growth factor β1. Self-deliverable siRNA was used to knockdown mRNA and protein expression, without affecting the viability and morphology of slices. After silencing HSP47, only the secretion of fibronectin was reduced while other aspects of fibrogenesis remained unaffected (e.g., myofibroblast differentiation as well as collagen secretion and deposition). These observations are surprising as others have shown that Serpinh1-targeting siRNA suppressed collagen deposition in animals. Further studies are therefore warranted to elucidate downstream effects on fibrosis upon silencing HSP47
    corecore