273 research outputs found

    Atomic and Molecular Data for Optical Stellar Spectroscopy

    Get PDF
    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2- to 10-m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre (VAMDC). We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 100000 stars.Comment: Published 30 April 2015 in Physica Script

    Fe I Oscillator Strengths for the Gaia-ESO Survey

    Full text link
    The Gaia-ESO Public Spectroscopic Survey (GES) is conducting a large-scale study of multi-element chemical abundances of some 100 000 stars in the Milky Way with the ultimate aim of quantifying the formation history and evolution of young, mature and ancient Galactic populations. However, in preparing for the analysis of GES spectra, it has been noted that atomic oscillator strengths of important Fe I lines required to correctly model stellar line intensities are missing from the atomic database. Here, we present new experimental oscillator strengths derived from branching fractions and level lifetimes, for 142 transitions of Fe I between 3526 {\AA} and 10864 {\AA}, of which at least 38 are urgently needed by GES. We also assess the impact of these new data on solar spectral synthesis and demonstrate that for 36 lines that appear unblended in the Sun, Fe abundance measurements yield a small line-by-line scatter (0.08 dex) with a mean abundance of 7.44 dex in good agreement with recent publications.Comment: Accepted for publication in Mon. Not. R. Astron. So

    Direct Measures of Path Delays on Commercial FPGA Chips

    Full text link
    We present a general technique for measuring the propagation delay on the internal wires of FPGA chips. The measure is based on the comparison between the operating frequencies of two ring oscillators that differ only for the structure under test, that is included (or not) in the loop. Experimental results are presented for a device of the Xilinx XC4000 family

    Experimental exploration of the origin of magnetostriction in single crystalline iron

    Get PDF
    The magnetostrictive atomic strain in a pure Fe single crystal was measured by differential x-ray absorption spectroscopy. The obtained tetragonal magnetostriction constant, (3/2)λ100, was determined to be 45 ppm, consistent with the previously reported theoretical value calculated from a spin-orbit coupling theory. These results provide a foundation for understanding the origin of magnetostriction in pure Fe as well as Fe-based binary alloys

    Fe I Oscillator Strengths for Transitions from High-lying Even-Parity Levels

    Full text link
    New radiative lifetimes, measured to ±\pm 5 % accuracy, are reported for 31 even-parity levels of Fe I ranging from 45061 cm1^{-1} to 56842 cm1^{-1}. These lifetimes have been measured using single-step and two-step time-resolved laser-induced fluorescence on a slow atomic beam of iron atoms. Branching fractions have been attempted for all of these levels, and completed for 20 levels. This set of levels represents an extension of the collaborative work reported in Ruffoni et al. (2014). The radiative lifetimes combined with the branching fractions yields new oscillator strengths for 203 lines of Fe I. Utilizing a 1D-LTE model of the solar photosphere, spectral syntheses for a subset of these lines which are unblended in the solar spectrum yields a mean iron abundance of = 7.45 ±\pm 0.06.Comment: 18 pages, 4 tables, 4 figures. Accepted for publication in the Astrophysical Journal Supplement Serie

    Androgen receptor condensates as drug targets

    Get PDF
    Transcription factors are among the most attractive therapeutic targets, but are considered largely undruggable. Here we provide evidence that small molecule-mediated partitioning of the androgen receptor, an oncogenic transcription factor, into phase-separated condensates has therapeutic effect in prostate cancer models. We show that the phase separation capacity of the androgen receptor is driven by aromatic residues and short unstable helices in its intrinsically disordered activation domain. Based on this knowledge, we developed tool compounds that covalently attach aromatic moieties to cysteines in the receptors’ activation domain. The compounds enhanced partitioning of the receptor into condensates, facilitated degradation of the receptor, inhibited androgen receptor-dependent transcriptional programs, and had antitumorigenic effect in models of prostate cancer and castration-resistant prostate cancer in vitro and in vivo. These results establish a generalizable framework to target the phase- separation capacity of intrinsically disordered regions in oncogenic transcription factors and other disease-associated proteins with therapeutic intent

    The Gaia-ESO Survey : The analysis of high-resolution UVES spectra of FGK-type stars

    Get PDF
    Date of Acceptance: 01/09/2014Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 105 stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.Peer reviewe
    corecore