382 research outputs found

    Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures

    Get PDF
    The voxel finite cell method employs unfitted finite element meshes and voxel quadrature rules to seamlessly transfer CT data into patient-specific bone discretizations. The method, however, still requires the explicit parametrization of boundary surfaces to impose traction and displacement boundary conditions, which constitutes a potential roadblock to automation. We explore a phase-field based formulation for imposing traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as initial condition. Phase-field approximations of the boundary and its gradient are then employed to transfer all boundary terms in the variational formulation into volumetric terms. We show that in the context of the voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions defined over explicit sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human femur and a vertebral body

    Shaping bacterial population behavior through computer-interfaced control of individual cells

    Get PDF
    This is the final version. Available from Springer Nature via the DOI in this record.Strains and data are available from the authors upon request. Custom scripts for the described setup are available as Supplementary Software.Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.European Union's Seventh Frame ProgrammeAustrian Science FundAgence Nationale de la RechercheAgence Nationale de la RechercheAgence Nationale de la Recherch

    Existence and asymptotic behavior of solutions for neutral stochastic partial integrodifferential equations with infinite delays

    Get PDF
    In this work we study the existence, uniqueness and asymptotic behavior of mild solutions for neutral stochastic partial integrodifferential equations with infinite delays. To prove the results, we use the theory of resolvent operators as developed by R. Grimmer [12] R. Grimmer. Resolvent operators for integral equations in a banach space. Transactions of the American Mathematical Society, 273(1): 333-349, 1982, as well as a version of the fixed point principle. We establish sufficient conditions ensuring that the mild solutions are exponentially stable in pth-moment. An example is provided to illustrate the abstract results.Fondo Europeo de Desarrollo RegionalMinisterio de Economía y CompetitividadConsejería de Innovación, Ciencia y Empresa (Junta de Andalucía

    Automated Generation of High-Order Modes for Tests of Quasi-Optical Systems of Gyrotrons for W7-X Stellarator

    Get PDF
    A test system for the verification of the quasi-optical converter system is vital in the gyrotron development. For this reason, an automated measurement setup has been developed and is benchmarked with the TE28,8_{28,8} mode operating in the cavities of the gyrotrons of W7-X with a high purity of about 95 % and a counter-rotating amount of about 0.3 %. The time duration for the mode generator adjustment has been reduced to two days for this mode. After a successful mode excitation, the quasi-optical mode converter, consisting of a launcher and three mirrors, is measured having a vectorial Gaussian mode content of 97 %

    Atomically precise placement of single dopants in Si

    Get PDF
    We demonstrate the controlled incorporation of P dopant atoms in Si(001), presenting a new path toward the creation of atomic-scale electronic devices. We present a detailed study of the interaction of PH3 with Si(001) and show that it is possible to thermally incorporate P atoms into Si(001) below the H-desorption temperature. Control over the precise spatial location at which P atoms are incorporated was achieved using STM H lithography. We demonstrate the positioning of single P atoms in Si with similar to1 nm accuracy and the creation of nanometer wide lines of incorporated P atoms

    Investigation of a Mini-Channel Cavity Cooling Concept for a 170 GHz, 2 MW Coaxial-Cavity Gyrotron

    Get PDF
    The maximum heat load on the cavity wall of high power fusion gyrotrons is one of the major limiting technological factors for the operation of the tube. To achieve the requested output power, efficiency and pulse length, a very efficient cooling of the interaction structure is mandatory. In this work, the performance of a mini-channel cavity cooling system for a 170 GHz, 2 MW coaxial-cavity gyrotron is numerically investigated, including the development of a mock-up test set-up for experimental validation

    Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries with Liquid or Solid Electrolyte

    Get PDF
    In liquid electrolyte-type lithium-ion batteries, Nickel-rich NCM (Li1+x_{1+x }(Ni1yz_{1−y−z}Coy_{ y}Mnz)1x_{1−x}O2_{2}) as cathode active material allows for high discharge capacities and good material utilization, while solid-state batteries perform worse despite the past efforts in improving solid electrolyte conductivity and stability. In this work, we identify major reasons for this discrepancy by investigating the lithium transport kinetics in NCM-811 as typical Ni-rich material. During the first charge of battery half-cells, cracks form and are filled by the liquid electrolyte distributing inside the secondary particles of NCM. This drastically improves both the lithium chemical diffusion and charge transfer kinetics by increasing the electrochemically active surface area and reducing the effective particle size. Solid-state batteries are not affected by these cracks because of the mechanical rigidity of solid electrolytes. Hence, secondary particle cracking improves the initial charge and discharge kinetics of NCM in liquid electrolytes, while it degrades the corresponding kinetics in solid electrolytes. Accounting for these kinetic limitations by combining galvanostatic and potentiostatic discharge, we show that Coulombic efficiencies of about 89% at discharge capacities of about 173 mAh g1+x_{1+x }NCM1^{-1} can be reached in solid-state battery half-cells with LiNi0.8_{0.8}Co0.1_{0.1}Mn0.1_{0.1}O2_{2} as cathode active material and Li6_{6}PS5_{5}Cl as solid electrolyte
    corecore