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We demonstrate the controlled incorporation of P dopant atoms in Si(001), presenting a new path
toward the creation of atomic-scale electronic devices. We present a detailed study of the interaction of
PH3 with Si(001) and show that it is possible to thermally incorporate P atoms into Si(001) below the
H-desorption temperature. Control over the precise spatial location at which P atoms are incorporated
was achieved using STM H lithography. We demonstrate the positioning of single P atoms in Si with
�1 nm accuracy and the creation of nanometer wide lines of incorporated P atoms.
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FIG. 1 (color). A STM tip has been used to remove H atoms
from a H-terminated Si(001) surface to form (a) 200� 30 nm2

rectangular patch, (b) two parallel lines of exposed Si(001)
surface, and (c) five single H-atom desorption sites. The de-
sorption parameters used were �4 V sample bias and 1 nA
tunnel current. The areas of bare Si(001) surface appear
brighter than the surrounding H-terminated surface due to
the additional tunnel current contributed by the Si surface
states [22]. Images (d),(g) show a �2 nm wide lithographic
line and �2 nm patch of hydrogen lithography. After exposure
to PH3, the adsorbed PH3 and PH2 molecules can be seen
within the lithographic areas in images (e) and (h) adsorbing
with c�4� 2� and p�2� 2� periodicities, respectively, as shown
to such lithographically defined areas of bare Si in in the schematics (f) and (i).
The ability to control the location of individual dopant
atoms within a semiconductor has enormous potential for
the creation of atomic-scale electronic devices, including
recent proposals for quantum cellular automata [1], single
electron transistors [2], and solid-state quantum com-
puters [3]. Current techniques for controlling the spatial
extent of dopant atoms in Si rely on either ion implanta-
tion techniques or dopant diffusion through optical or
electron-beam patterned mask layers. While the resolu-
tion of these techniques continues to improve they have
inherent resolution limits as we approach the atomic scale
[4]. The work presented here looks beyond conventional
techniques to position P dopant atoms with atomic pre-
cision by using scanning tunneling microscopy (STM)
based lithography on H passivated Si(001) surfaces [5,6]
to control the adsorption and subsequent incorporation of
single P dopant atoms into the Si(001) surface.

First, we show the controlled adsorption of PH3 mole-
cules to STM-patterned areas of H-terminated Si(001)
surfaces and identify both adsorbed PH3 molecules [7]
and the previously unobserved room temperature disso-
ciation product, PH2. We then show, using low PH3 dosed
clean Si(001) surfaces, that both of these room tempera-
ture adsorbates can be completely dissociated using a
critical anneal, and more importantly, that this results
in the substitutional incorporation of individual P atoms
into the top layer of the substrate. Finally, we combine
these two results to demonstrate the spatially controlled
incorporation of individual P dopant atoms into the
Si(001) surface with atomic-scale precision. Of crucial
importance to this final result is that the anneal tempera-
ture for P atom incorporation lies below the H-desorption
temperature, so that the H-resist layer effectively blocks
any surface diffusion of P atoms before their incorpora-
tion into the substrate surface.

Figures 1(a)–1(c) demonstrate the flexibility of STM H
lithography to create different sized regions of bare
Si(001) surface. As we will show, these regions can be
used not only as a template for dopant incorporation but
also to aid in fundamental studies of surface reactions.
In Figs. 1(d)–1(i) we confine the adsorption of phosphine
0031-9007=03=91(13)=136104(4)$20.00 
order to identify the dissociation products PH3 and
PH2. Figure 1(d) shows a �2 nm wide line of exposed
Si created using STM lithography on a H-terminated
Si(001) surface that was subsequently dosed with 0.3
langmuir (L � 0:75� 10�6 mbar s) of PH3 gas at room
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FIG. 2 (color). STM images of a PH3 dosed and annealed
Si(001) surface. (a) Si(001) surface dosed with 0.01 L of PH3

gas. The PH2 molecules do not appear as bright as in Fig. 1(h)
due to the additional tunnel current produced by the Si surface
� states of the clean Si(001) surface. (b) The PH3 dosed surface
after annealing to 350 �C. (c),(d) Filled- and empty-state STM
images of an ejected Si dimer chain. (e) A higher resolution
image of the 350 �C annealed surface showing a single P-Si
heterodimer and two monohydride dimers. (f) Schematic dia-
grams of a P-Si heterodimer and a monohydride dimer.
Parameters for all STM images were �1:6 V and 0.1 nA except
(d), which was imaged at �1:6 V.
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temperature [Fig. 1(e)]. Within the lithographic line in
Fig. 1(e) we can identify adsorbed PH3 molecules by their
appearance as circular protrusions centered on the dimer
rows and ordered into a c�4� 2� periodicity [Fig. 1(f)]
[7]. However, PH3 adsorption is known to be partially
dissociative at room temperature [8], producing adsorbed
PH2 and H as well as PH3. Repeating this experiment at
higher resolution using a smaller, �2 nm diameter
patch [Figs. 1(g) and 1(h)], we have been able to identify
these PH2 molecules as adsorbate protrusions positioned
asymmetrically about the dimer rows [9] and ordered
with a p�2� 2� periodicity, shown schematically in
Fig. 1(i). The above results demonstrate our ability to
place and identify P precursor molecules at predefined
locations on a Si surface. However, to create devices with
full electrical activation we need to incorporate the P
atoms from these molecules into the Si surface in sub-
stitutional lattice sites.

In previous studies, Hamers and co-workers [10] sug-
gested that individual P atoms are unstable on the Si(001)
surface and substitute for surface Si atoms to form P-Si
heterodimers. For this process to occur, however, the
adsorbed precursor PH3 and PH2 molecules must first
completely dissociate into P and H. For atomically precise
placement of P in Si we require this incorporation process
to take place without surface diffusion of the P atoms or
desorption of the adsorbed phosphine molecules or the
surrounding H-resist layer. To achieve this, we have first
performed an extensive study of annealing lightly PH3

dosed clean (H-free) Si(001) surfaces. Figure 2(a) shows a
STM image of a Si(001) surface that has been dosed with
0.01 L PH3. From the results shown in Figs. 1(d)–1(i), we
are able to identify molecularly adsorbed PH3 with an
apparent height of �0:07 nm above the substrate dimer
rows (our data and Ref. [11]), as well as PH2 molecules by
their distinctive asymmetric bonding arrangement.
Previous studies [10,12] observed the formation of P-Si
heterodimers upon annealing PH3 dosed surfaces to
�550 �C. However, at this temperature all H is desorbed
from the surface making this anneal temperature incom-
patible with H-resist lithography. Here, we use an anneal
temperature of �350 �C, which we find is sufficient to
incorporate P atoms, while being below the H-desorption
temperature.

The most obvious feature of the 350 �C annealed sur-
face, Fig. 2(b), is the appearance of bright, short, one-
dimensional (1D) lines above the substrate, aligned
perpendicular to the underlying dimer rows. The apparent
height (� 0:14 nm) and orientation of these 1D lines
confirm that they are single dimer rows of epitaxial Si
formed by the anisotropic agglomeration [13] of Si atoms
ejected from the substrate. This is further evidenced by
the characteristic splitting of the ejected dimer chains
between filled- and empty-state tunneling conditions [14],
as shown in Figs. 2(c) and 2(d).

The P-Si heterodimers in Fig. 2(b) are difficult to
resolve since they are overshadowed by the very bright
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1D Si chains on the upper atomic layer. By examining
a smaller area of the surface that is free from ejected
Si, Fig. 2(e), we are able to resolve the characteristic
asymmetry of the P-Si heterodimer. We measure a
�0:03 nm height increase of the P-Si heterodimer com-
pared to the neighboring Si dimers, which arises from the
additional tunnel current due to the dangling bond of the
Si atom of the P-Si heterodimer [Fig. 1(f)]. Additionally,
the incorporated P atom induces static buckling of the
neighboring Si dimers, such that the heterodimer appears
to extend further along the dimer row than a single dimer
width. The characteristic asymmetric appearance of this
feature provides a clear signature of a single P atom
incorporated into the Si(001) surface forming a single
P-Si heterodimer.

In addition, we also observe dark, single dimer va-
cancylike features on the 350 �C annealed surface
[Fig. 2(e)]. These depressions are H-terminated Si dimers
(monohydride, H-Si-Si-H), formed by the adsorption of
H to the surface subsequent to the dissociation of the PH3

and PH2 molecules [15]. Their dark appearance in STM
images is characteristic of H passivating the surface and
removing the Si � states from the band gap.
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Identification of each of the various features on the
surface in Fig. 2(b) is further confirmed by STM studies
of the surface at higher temperatures. Raising the anneal
temperature (to �450 �C) causes the disappearance of the
short 1D Si dimer chains from the surface as a result of
the diffusion of the Si atoms from the ejected Si dimer
chains to step edges, as observed in Si growth experi-
ments [16]. Further annealing to �550 �C results in the
disappearance of the monohydride dimers, as the mono-
hydride is desorbed from the Si(001) surface [17]. Finally,
annealing to �750 �C causes the removal of the P-Si
heterodimers in agreement with the established desorp-
tion temperature of P from the Si(001) surface [18]. These
studies demonstrate that P atoms can be incorporated into
the Si(001) surface from adsorbed PH3 molecules by
annealing to 350 �C.

We now wish to control the spatial location of the
P atom incorporation using the H-resist lithography
technique. Figure 3(a) shows an STM image of a
FIG. 3 (color). STM images of controlled P incorporation
into Si(001) along two perpendicular �4 nm wide lithographic
lines. (a) Lithographic lines created by moving the tip with a
velocity of 40 nm=s while applying �4 V sample bias and 1 nA
tunnel current. (b),(c) High-resolution STM images of the
boxed regions in image (a) after dosing with 0.3 L of PH3

and annealing to 350 �C. Incorporated P atoms in the form of
P-Si-H ‘‘hydrided heterodimers’’ are labeled by white arrows,
while ejected Si dimer chains are labeled with black arrows.
(d) Line profile taken over a single P-Si-H heterodimer, show-
ing a �0:04 nm height increase due to tunneling from the P
lone pair orbital. (e),(f) Filled- and empty-state STM images of
a H-terminated ejected Si dimer chain.

136104-3
H-terminated Si(001) surface where the STM tip has
been used to selectively remove H atoms from Si along
two perpendicular �4 nm wide lines. The patterned sur-
face was then exposed to �0:3 L PH3 and annealed to
�350 �C as shown in Figs. 3(b) and 3(c). Along the length
of both lithographic lines, many asymmetric features are
observed, corresponding to the formation of P-Si hetero-
dimers [indicated by white arrows in Figs. 3(b) and 3(c)].
In contrast to the clean surface results, these P-Si hetero-
dimers are H terminated (P-Si-H) resulting from the al-
most complete retermination of the lithographic line with
H during the 350 �C anneal. Figure 3(d) shows a line
profile taken over a single P-Si-H heterodimer, showing
a �0:04 nm increase due to tunneling from the lone pair
state of the P atom. Importantly, we find that these P-Si-H
heterodimers are solely located within the �4 nm wide
region of the original lithographic line, confirming that
the H-resist layer, which survives the 350 �C anneal in-
tact, acts as an effective mask for the controlled incor-
poration of P into the surface. We also observe clear
evidence of ejected Si dimer chains along (and confined
to) the lithographic line. As was the case in the clean
surface experiments, filled- and empty-state images of the
ejected Si chains [Figs. 3(e) and 3(f)] reveal the character-
istic splitting of these ejected Si dimer chains under
empty-state imaging. These results demonstrate that it
is possible, using an appropriate anneal, to control-
lably incorporate P atoms from adsorbed phosphine mole-
cules into Si(001) at precise locations using STM-based
H lithography.

We note that the PH3 dose rate and fluence is critical
in obtaining the successful incorporation of P within
our lithographic H-desorption sites and not at random
single dimer H-desorption sites. Using both higher PH3

dose rates (10�8 mbar chamber pressure) and total doses
(� 3 L), we have noted the adsorption of PH3 at single
H-desorption sites [19]. However, with the low dose rate
and fluence used here (10�9 mbar and 0.3 L) we have
observed an almost complete absence of adsorption at
single H-desorption sites, with coverages approaching
saturation in the larger lithographically defined desorp-
tion regions.

Finally, we have been able to achieve the ultimate limit
of P atom placement in Si(001) by incorporating single
P atoms into the Si(001) surface with atomic-scale pre-
cision. Figure 4(a) shows a H-terminated Si surface with
a controlled desorption site of diameter �1 nm, exposing
just two or three of the substrate Si dimers. Figure 4(b)
shows the same surface area after dosing with �0:3 L
PH3 and annealing to �350 �C. Here we see a very
clear signature of the asymmetric P-Si-H heterodimer
within the �1 nm lithographic area and complete reter-
mination of this area with H. This is the first demonstra-
tion of the spatially controlled incorporation of a single
dopant atom in Si that can be produced repeatedly in our
laboratory. In Figs. 4(c) and 4(d) we have incorporated
two P atoms in Si �12 nm apart for the qubit array of a
136104-3



FIG. 4 (color). STM images of atomically controlled single
P atom incorporation into Si(001). (a) H-terminated Si(001)
with a �1 nm diameter H-desorption point (� 3 dimers long).
(b) The same area after PH3 dosing and annealing to 350 �C
showing a single P atom incorporated at the location defined by
the H-desorption point. (c) Two H-desorption sites separated by
�12 nm. (d) The same area of the surface shown in (c), after
PH3 dosing and annealing to 350 �C. A single P atom has been
incorporated into the surface within both of the two litho-
graphically defined areas. The separation of these two P atoms
(� 12 nm) is of the order of the 20 nm separation required for
the P qubit array of the Kane solid-state quantum computer [3].
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Si-based quantum computer [3]. Figure 4(c) shows two
desorption sites of diameter �1 nm and separated by
�12 nm. After PH3 dosing and annealing we observe
the incorporation of a single P atom at each of these
lithographic sites, as seen in Fig. 4(d). We note the pres-
ence of two single H atom desorption sites in addition to
the two lithographically defined desorption regions in
Fig. 4(c). However, as seen in Fig. 4(d), these sites do
not produce incorporated P atoms at the low PH3 dose rate
and fluence used. Additionally, in Fig. 4(d), several single
H atom desorption sites are seen as white protrusions
surrounding the left P-Si-H heterodimer. These are the
result of single H atom desorption events during the
350 �C anneal and do not affect the P atom placement.
The �1 nm placement accuracy that we demonstrate here
is more than adequate for the Kane qubit architecture [3].

In summary, we have demonstrated the first controlled
incorporation of single P dopant atoms in Si with atomic-
scale precision. To elucidate this, we have first studied
the interaction of PH3 with the Si(001) surface and, in
particular, observed the substitutional incorporation of
P atoms into the substrate after annealing to 350 �C.
We then employed STM-based H lithography to control
the spatial locations of P atoms incorporated into the
substrate. Critical to this result is that the 350 �C anneal
lies well below the H-desorption temperature such that
136104-4
the H-resist layer acts as an atomic-scale mask for
controlled P atom incorporation. Preliminary studies to
encapsulate these dopants in Si — and observe the result-
ing change in surface electrostatic potential [20] to con-
firm minimal segregation of array — are underway with
promising results [21]. These results open the door to the
exciting possibility of creating electronic devices in Si
with atomically controlled dopant profiles.
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