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Tomás Caraballo†

Dpto. Ecuaciones Diferenciales y Análisis Numérico
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Abstract

In this work we study the existence, uniqueness and asymptotic behavior of mild solutions for neutral
stochastic partial integrodifferential equations with infinite delays. To prove the results, we use the
theory of resolvent operators as developed by R. Grimmer [12], as well as a version of the fixed point
principle. We establish sufficient conditions ensuring that the mild solutions are exponentially stable in
pth-moment. An example is provided to illustrate the abstract results.
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1 Introduction

The study and importance of nonlinear stochastic delay partial differential equations delay are motivated by
the fact that when one wants to model some evolution phenomena arising in Physics, Biology, Engineering,
etc., some hereditary characteristics such as aftereffect, time lag, memory, and time delay can appear in the
variables of the problem. Typical examples arise from the researches of materials with thermal memory,
biochemical reactions, population models, etc. (see, for instance, Hale and Lunel [15], Murray [20], Ruess
[24, 25], Wu [28], Caraballo et al. [4, 5, 6], Caraballo and Real [7], and references therein).

The existence, uniqueness and asymptotic behavior of solutions of stochastic partial differential equations
have been considered by many authors (see for example [1, 2, 3, 8, 9, 10, 11, 14, 17, 26, 27]). Caraballo and Liu
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[8], Liu and Mao [19] and Taniguchi [26] discussed the exponential stability of the strong and mild solutions,
by imposing some kind of coercivity condition, using the Lyapunov method and by a direct estimate of
solutions, respectively. In particular, the Lyapunov direct method has some difficulties with the theory and
application to specific problems when discussing the asymptotic behavior of solutions in stochastic differential
equations. More recently, Luo [18] has studied the asymptotic stability of mild solutions of stochastic partial
differential equations with finite delays using a fixed point approach which shows that some of these difficulties
can be overcome with this fixed point theory. Moreover, systems with infinite delay deserve a study because
they describe several interesting problems which are present in the real world. Therefore, it is interesting
to study the stability problems for stochastic systems with infinite delays. However, to the best of our
knowledge, no work has been reported on the existence of solutions and stability problems for stochastic
integrodifferential equations with infinite delays. Motivated by the above considerations, in this paper we
will establish sufficient conditions ensuring the existence and asymptotic stability of mild solutions to the
following stochastic partial integrodifferential equations with infinite delays,



d [x(t) +G(t, x(t− ρ(t)))] = A [x(t) +G(t, x(t− ρ(t)))] dt

+
∫ t

0

B(t− s) [x(s) +G(s, x(s− ρ(s)))ds] dt

+b(t,
∫ 0

−∞
g(θ, x(t+ θ))dθ)dt+ h(t,

∫ 0

−∞
σ(θ, x(t+ θ))dθ)dw(t), t ≥ 0,

x0 = ϕ ∈ B,

(1.1)

here, the state x(·) takes values in a separable real Hilbert spaces H with inner product 〈·, .·〉H and norm ‖·‖H ,
A is the infinitesimal generator of a strongly continous semigroup of bounded linear operators S(t), t ≥ 0 on
H, with domain D(A) ⊂ H, and B(t), t ≥ 0 is a closed linear operator on H. The history xt : (−∞, 0] →
H, xt(θ) = x(t+θ), for t ≥ 0, belongs to some abstract phase space B which will be described axiomatically
in Section 2. Let K be another separable Hilbert spaces with inner product 〈·, .·〉K and norm ‖·‖K . Suppose
that {w(s) : 0 ≤ s ≤ t} is a given K-valued Wiener process with covariance operator Q ≥ 0 defined on a
complete probability space (Ω,F , {Ft}t≥0,P) equipped with a normal filtration {Ft}t≥0 which is generated
by the Wiener process w(·). We are also using the same notation ‖·‖ for the norm L(K;H), where L(K;H)
denotes the space of all bounded linear operator from K into H.

We assume that G, b : [0,+∞) × H → H, h : [0,+∞) × H → L0
2(K,H), g, σ : (−∞, 0] × H → H are

all Borel measurable, ρ(t) : [0,+∞) → [0, r] is continuous. Here L0
2 = L2(K0;H) denotes the space of all

Q-Hilbert-Schmidt operators (see [22]) from K0 to H with the norm

|ξ|2L0
2

:= tr(ξQξ∗) <∞, ξ ∈ L(K,H).

The initial data ϕ = {ϕ(t) : −∞ < t ≤ 0} is an F0-adapted, B-valued random variable independent of the
Wiener process w with finite second moment.

Our main results concerning (1.1), rely essentially on techniques based on the use of a strongly continuous
family of operators R(t), t ≥ 0 defined on the Hilbert space H and called their resolvent (the precise definition
will be given below).

The paper is organized as follows: in Section 2 we recall some preliminaries which are used throughout
this paper. In Section 3 we state the existence, uniqueness and asymptotic behavior of a mild solution.
Finally, in Section 4, an example is given to illustrate our abstract results.
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2 Preliminary Notes

2.1 Wiener process

Let (Ω,F , {Ft}t≥0,P) be a filtered complete probability space satisfying the usual conditions. We set
Ft = F0 for t < 0. We denote by W = (W )t≥0 a K-valued Wiener process defined on the probability
space (Ω,F , {Ft}t≥0, P ) with covariance operator Q. That is,

E 〈w(t), x〉K 〈w(t), y〉K = (t ∧ s) 〈Qx, y〉K , ∀x, y ∈ K,

where Q is a positive, self-adjoint trace class operator on K. For the construction of stochastic integral in
Hilbert spaces, we refer to Da Prato and Zabczyk [22].

2.2 Partial integrodifferential equations in Banach spaces

In this section, we recall some fundamental facts needed to establish our results. Regarding the theory of
resolvent operators we refer the reader to [12, 23]. Throughout the paper, H will denote a Banach space
with norm ‖ · ‖H , A and B(t) are closed linear operators on H. Y represents the Banach space D(A), the
domain of operator A, equipped with the graph norm

‖y‖Y := ‖Ay‖H + ‖y‖H for y ∈ Y.

The notation C([0,+∞);Y ) stands for the space of all continuous functions from [0,+∞) into Y . We then
consider the following Cauchy problem v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds for t ≥ 0,

v(0) = v0 ∈ H.
(2.1)

Definition 2.1. ([12]) A resolvent operator for equation (2.1) is a bounded linear operator valued function
R(t) ∈ L(H) for t ≥ 0, satisfying the following properties :

(i) R(0) = I and ‖R(t)‖ ≤ Neβt for some constants N and β.

(ii) For each x ∈ H, R(t)x is strongly continuous for t ≥ 0.

(iii) For x ∈ Y, R(·)x ∈ C1([0,+∞);H) ∩ C([0,+∞);Y ) and

R′(t)x = AR(t)x+
∫ t

0

B(t− s)R(s)xds

= R(t)Ax+
∫ t

0

R(t− s)B(s)xds for t ≥ 0.

For additional details on resolvent operators, we refer the reader to [12, 23]. The resolvent operator plays
an important role to study the existence of solutions and to establish a variation of constants formula for
non–linear systems. For this reason, we need to know when the linear system (2.1) possesses a resolvent
operator. Theorem 2.2 below provides a satisfactory answer to this problem.

In what follows we suppose the following assumptions:
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(H1) A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 which is compact for t > 0 on H.

(H2) For all t ≥ 0, B(t) is a continuous linear operator from (Y, ‖ · ‖Y ) into (H, ‖ · ‖H). Moreover, there
exists an integrable function c : [0,+∞)→ R+ such that for any y ∈ Y , t 7→ B(t)y belongs to
W 1,1([0,+∞), H) and ∥∥∥∥ ddtB(t)y

∥∥∥∥
H

≤ c(t)‖y‖Y for y ∈ Y and t ≥ 0.

Theorem 2.2. ([12]) Assume that hypotheses (H1) and (H2) hold. Then equation (2.1) admits a
resolvent operator (R(t))t≥0.

Theorem 2.3. ([16]) Assume that hypotheses (H1) and (H2) hold. Then, the corresponding resolvent
operator R(t) of the equation (2.1) is continuous for t > 0 in the operator norm, namely, for all t0 > 0, it
holds that lim

h→0
‖R(t0 + h)−R(t0)‖ = 0.

In the sequel, we recall some results from [12] concerning the existence of solutions for the following
integrodifferential equation v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds+ q(t) for t ≥ 0,

v(0) = v0 ∈ H,
(2.2)

where q : [0,+∞[→ H is a continuous function.

Definition 2.4. ([12]) A continuous function v : [0,+∞)→ H is said to be a strict solution of equation
(2.2) if

(i) v ∈ C1([0,+∞);H) ∩ C([0,+∞);Y ),

(ii) v satisfies Eq. (2.2) for t ≥ 0.

Remark 2.5. From this definition we deduce that v(t) ∈ D(A), and the function B(t− s)v(s) is integrable,
for all t > 0 and s ∈ [0,+∞).

Theorem 2.6. ([12]) Assume that (H1)-(H2) hold. If v is a strict solution of the (2.2), then the
following variation of constants formula holds

v(t) = R(t)v0 +
∫ t

0

R(t− s)q(s)ds for t ≥ 0. (2.3)

Accordingly, we can establish the following definition.

Definition 2.7. ([12]) A function v : [0,+∞)→ H is called a mild solution of equation (2.2), for v0 ∈ H,
if v satisfies the variation of constants formula (2.3).

The next theorem provides sufficient conditions ensuring the regularity of solutions of the equation (2.2).

Theorem 2.8. ([12]) Let q ∈ C1([0,+∞);H) and v be defined by (2.3). If v0 ∈ D(A), then v is a strict
solution of equation (2.2).

In the sequel, we suppose that the phase space is axiomatically defined, and we use the approach proposed
by Hale and Kato in [13]. To establish the axioms of the phase space B we follow the terminology used in
Hino et al. [29]. The axioms of the phase space B are established for F0-measurable functions from (−∞, 0]
into H, endowed with a seminorm and are the following:
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(A1) If x : (−∞, T ]→ H, T > 0 is such that x0 ∈ B, then, for every t ∈ [0, T ], the following conditions
hold:
(i) xt ∈ B,
(ii) ‖x(t)‖ ≤ L ‖xt‖B,
(iii) ‖xt‖B ≤ u(t) sup

0≤s≤t
‖x(s)‖H + v(t) ‖x0‖B,

where L > 0 is a constant; u(·), v(·) : [0,+∞)→ [1,+∞), u(.) is continuous, v(·) is locally bounded, and
L, u(·), v(·) are independent of x(·)
(A2) The space B is complete.
(A3) For the functions x(·) in (A1), t→ xt is a B-valued continuous function for t ∈ [0, T ].
(A4) If (ϕn)n∈N is a sequence of continuous functions with compact support defined from (−∞, 0] into
H, which converges to ϕ uniformly on compact subsets of (−∞, 0], thenϕ ∈ B and ‖ϕn − ϕ‖B → 0 as
n→∞.
Before starting and proving the main results, we present the definition of the mild solution to (1.1).

Definition 2.9. An H-valued stochastic process {x(t), t ∈ (−∞, T ]}, 0 ≤ T ≤ ∞, is called a mild solution
of equation (1.1) if

(i) x(t) is an Ft-adapted, continuous process with
∫ T

0

‖x(t)‖pH dt <∞ almost surely;

(ii) for t ≥ 0, x(t) satisfies the following integral equation:

x(t) = R(t)[ϕ(0) +G(0, ϕ(−ρ(0)))]−G(t, x(t− ρ(t)))

+
∫ t

0

R(t− s)b(s,
∫ 0

−∞
g(θ, x(s+ θ))dθ)ds

+
∫ t

0

R(t− s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)dW (s),

and x0 = ϕ ∈ B, i.e. x(t) = ϕ(t) for t ≤ 0.

Definition 2.10. Let p ≥ 2 be an integer. The mild solution x(t) of (1.1) with an initial value ϕ ∈ B is
said to decay exponentially to zero in pth-moment if there exist some constants M ≥ 1, η > 0 such that

E ‖x(t)‖pH < ME sup
θ≤0
‖ϕ(θ)‖pH e

−ηt, t ≥ 0.

3 Main Results

In this section we discuss the existence, uniqueness and asymptotic behavior of the mild solution to
equation (1.1). In order to obtain our main result, we shall impose the following assumptions:

(H3) The resolvent operator given by Theorem 2.2 satisfies the following condition:

‖R(t)‖ ≤ e−γt for some constant γ > 0.

(H4) For p ≥ 2, there exists a constant KG > 0 such that for any x, y ∈ H, and t ≥ 0,

‖G(t, x)−G(t, y)‖pH ≤ KG ‖x− y‖pH .
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(H5) The mappings b : [0,+∞)×H → H,h : [0,+∞)×H → L0
2(K,H) satisfy Lipschitz conditions, i.e.,

there exist positive constants Kb,Kh such that, for any x, y ∈ H, and t ∈ R,

‖b(t, x)− b(t, y)‖H ≤ Kb ‖x− y‖H , ‖h(t, x)− h(t, y)‖L0
2
≤ Kh ‖x− y‖H .

Moreover, we assume that ‖b(t, 0)‖H = ‖h(t, 0)‖L0
2

= 0.
(H6) There exist some positive constants Lg, Lσ, ξ, with 0 < ξ < γ, and such that for all t ∈ R, x, y ∈ H,

‖g(t, x)− g(t, y)‖H ≤ Lge
−ξ|t| ‖x− y‖H ;

‖σ(t, x)− σ(t, y)‖H ≤ Lσe
−ξ|t| ‖x− y‖H ,

we further assume that ‖G(t, 0)‖H = ‖σ(t, 0)‖H = ‖g(t, 0)‖H = 0.
Our main goal is to state and prove the following theorem.

Theorem 3.1. Let p ≥ 2 be an integer and assume that (H1)-(H6) are satisfied. Suppose also that

3p−1
[
KG +Kp

bL
p
g(ξγ)−p + (2γ)

−p
2 Kp

hL
p
σξ
−pCp

]
< 1, (3.1)

where Cp =
(
p(p− 1)

2

) p
2

. If an initial value ϕ ∈ B satisfies

E ‖ϕ(t)‖pH ≤M0E ‖ϕ(0)‖pH e
−µt, t ≤ 0,

for some M0 ≥ 1 and 0 < µ < ξ, then there exists a unique mild solution to (1.1) associated to ϕ(t) and
decays exponentially to zero in pth moment.

In order to prove the theorem, we first recall a useful lemma.

Lemma 3.2. (Burkholder-Davis-Gundy inequality) ([22], p. 182) Let l ≥ 1. Then for an arbitrary
L0

2-valued predictable process Φ(t),

sup
0≤s≤t

E

∥∥∥∥∫ s

0

φ(u)dw(u)
∥∥∥∥2l

H

≤ (l(2l − 1))l
(∫ t

0

(
E ‖Φ(s)‖2lL0

2

) 1
l

ds

)l
. (3.2)

Proof of Theorem 3.1. Without loss of generality, we assume that 0 < η < ξ. For the given initial datum
ϕ ∈ B, we denote by S the subset of the Banach space of all Ft-adapted continuous processes x(·) : R→ H
endowed with the norm ‖x‖S := sup

t∈R
E ‖x(t)‖pH , such that x(t) = ϕ(t) for t ≤ 0, and there exist some

constants M∗ ≥ 1, η > 0 and η < ξ depending on x(·), satisfying

E ‖x(t)‖pH < M∗E sup
θ≤0
‖ϕ(θ)‖pH e

−ηt, t ≥ 0,

which is a complete metric space for the distance induced by this norm.
Define a mappingπ : S→ S by π(x)(t) = ϕ(t) for t ≤ 0 and

π(x)(t) = R(t)[ϕ(0) +G(0, ϕ(−ρ(0)))]−G(t, x(t− ρ(t)))

+
∫ t

0

R(t− s)b(s,
∫ 0

−∞
g(θ, x(s+ θ))dθ)ds

+
∫ t

0

R(t− s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)dW (s) for t ≥ 0

= I1 + I2 + I3 + I4. (3.3)
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We need to prove that π(S) ⊂ S and that is contractive.
Let us first prove the continuity of (πx)(t) on t ≥ 0. To this end, let x ∈ S, t1 ≥ 0 and |r| > 0 be sufficiently
small. Notice that

E ‖(πx)(t1 + r)− (πx)(t1)‖pH ≤ 4p−1
4∑
i=1

E ‖Ii(t1 + r)− Ii(t1)‖pH .

Applying Lemma 3.2 together with assumption (H3), it follows that

E ‖I4(t1 + r)− I4(t1)‖pH

= E

∥∥∥∥∫ t1+r

0

R(t1 + r − s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)dW (s)

−
∫ t1

0

R(t1 − s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)dW (s)

∥∥∥∥p
H

≤ 2p−1Cp


∫ t1

0

(
E

∥∥∥∥(R(t1 + r − s)−R(t1 − s))h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)

∥∥∥∥p
L0

2

) 2
p

ds


p
2

+

∫ t1+r

t1

(
E

∥∥∥∥R(t1 + r − s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)

∥∥∥∥p
L0

2

) 2
p

ds


p
2


≤ 2p−1Cp


∫ t1

0

(
‖R(t1 + r − s)−R(t1 − s)‖pE

∥∥∥∥h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)

∥∥∥∥p
L0

2

) 2
p

ds


p
2

+

∫ t1+r

t1

(
‖R(t1 + r − s)‖pE

∥∥∥∥h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)

∥∥∥∥p
L0

2

) 2
p

ds


p
2
 .

Noting that for any s ∈ [0, T ], 0 ≤ T <∞, we have

E

∥∥∥∥h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)

∥∥∥∥p
L0

2

≤ Kp
hE

[∫ 0

−∞
‖σ(θ, x(s+ θ))‖H dθ)

]p
≤ Kp

hL
p
σ

(∫ s

−∞
eξ(τ−s)dτ

)p−1 ∫ s

−∞
eξ(τ−s)E ‖x(τ)‖pH dτ

≤ Kp
hL

p
σξ

1−p
[∫ 0

−∞
eξ(τ−s)M0E ‖ϕ(0)‖pH e

−µτdτ +
∫ s

0

eξ(τ−s)M∗E sup
θ≤0
‖ϕ(θ)‖pH e

−ητdτ

]
≤ Kp

hL
p
σξ

1−p
(
M∗E supθ≤0 ‖ϕ(θ)‖pH

ξ − η
e−ηs +

M0E supθ≤0 ‖ϕ(θ)‖pH
ξ − µ

e−ξs
)

≤ L,
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where L is a positive constant. Using the norm continuity of R(t) for t > 0 and applying Lebesgue’s
dominated convergence theorem, it follows that

E ‖I4(t1 + r)− I4(t1)‖pH → 0 as r → 0.

Similarly, it is not difficult to check that E ‖Ii(t1 + r)− Ii(t1)‖pH → 0 as r → 0, i = 1, 2, 3.
Next, we show thatπ(S) ⊂ S. Let x ∈ S. From the definition of π, we have

E |π(x)(t)|pH ≤ 4p−1E |R(t)[ϕ(0) +G(0, ϕ)]|pH + 4p−1E |G(t, x(t− ρ(t)))|pH (3.4)

+4p−1E

∥∥∥∥∫ t

0

R(t− s)b(s,
∫ 0

−∞
g(θ, x(s+ θ))dθ)ds

∥∥∥∥p
H

+4p−1E

∥∥∥∥∫ t

0

R(t− s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)dW (s)

∥∥∥∥p
H

:= 4p−1(I1 + I2 + I3 + I4).

By assumption (H4), we obtain

E ‖G(t, x(t− ρ(t)))‖pH ≤ E ‖G(t, x(t− ρ(t)))−G(t, 0)‖pH (3.5)
≤ KGE |x(t− ρ(t))|pH

≤ KG

(
M∗eηrE sup

θ≤0
‖ϕ(θ)‖pH e

−ηt +M0e
µrE ‖ϕ(0)‖pH e

µt

)
.

For the term I3, by an application of Hölder inequality and assumption (H4), it follows that

I3 ≤ E

[∫ t

0

∥∥∥∥R(t− s)b(s,
∫ 0

−∞
g(θ, x(s+ θ))dθ)

∥∥∥∥
H

ds

]p
≤ Kp

bE

[∫ t

0

e−γ(t−s)
∥∥∥∥∫ 0

−∞
g(θ, x(s+ θ))dθ

∥∥∥∥
H

ds

]p
≤ Kp

b

[∫ t

0

e−γ(t−s)ds

]p−1

E

∫ t

0

∥∥∥∥e−γ(t−s)p

∫ 0

−∞
g(θ, x(s+ θ))dθ

∥∥∥∥p
H

ds

≤ Kp
b γ

1−pE

∫ t

0

[∫ s

−∞
Lge

−γ(t−s)
p eξ(τ−s) ‖x(τ)‖H dτ

]p
ds

≤ Kp
b γ

1−pLpg

∫ t

0

[(∫ s

−∞
eξ(τ−s)dτ

)p−1 ∫ s

−∞
e−γ(t−s)eξ(τ−s)E ‖x(τ)‖pH dτ

]
ds

≤ Kp
b γ

1−pLpgξ
1−p

∫ t

0

[∫ 0

−∞
e−γ(t−s)eξ(τ−s)M0E ‖ϕ(0)‖pH e

−µτdτ

]
ds

+Kp
b γ

1−pLpgξ
1−p

∫ t

0

[∫ s

0

e−γ(t−s)eξ(τ−s)M∗E sup
θ≤0
‖ϕ(θ)‖pH e

−ητdτ

]
ds

≤ Kp
b γ

1−pLpgξ
1−p

[
M∗E supθ≤0 ‖ϕ(θ)‖pH

(γ − η)(ξ − η)
e−ηt +

M0E ‖ϕ(0)‖pH
(γ − ξ)(ξ − µ)

e−ξt
]
. (3.6)

Taking into account Lemma 3.2 and assumption (H5), we obtain that

8



I4 = E

∥∥∥∥∫ t

0

R(t− s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)dW (s)

∥∥∥∥p
H

≤ Cp


∫ t

0

[
E

∥∥∥∥R(t− s)h(s,
∫ 0

−∞
σ(θ, x(s+ θ))dθ)

∥∥∥∥p
L0

2

] 2
p

ds


p
2

≤ Kp
hCp


∫ t

0

e−2γ(t−s)

[
E

∥∥∥∥∫ 0

−∞
σ(θ, x(s+ θ))dθ

∥∥∥∥p
H

] 2
p

ds


p
2

,

where Cp =
(
p(p− 1

2

) p
2

.

By assumption (H5) and Hölder inequality, we deduce

I4 ≤ Kp
hCpL

p
σ

{∫ t

0

e−2γ(t−s)
[
E

(∫ s

−∞
eξ(τ−s) ‖x(τ)‖H dτ

)p] 2
p

ds

} p
2

≤ Kp
hCpL

p
σ


∫ t

0

e−2γ(t−s)

[(∫ s

−∞
eξ(τ−s)dτ

)p−1 ∫ s

−∞
eξ(τ−s)E ‖x(τ)‖pH dτ

] 2
p

ds


p
2

≤ Kp
hCpL

p
σξ

1−p

{∫ t

0

e−2γ(t−s)
[∫ s

−∞
eξ(τ−s)E ‖x(τ)‖pH dτ

] 2
p

ds

} p
2

.

Noting that p ≥ 2, we then have

I4 ≤ Kp
hCpL

p
σξ

1−p

{∫ t

0

e−2γ(t−s)
[∫ s

0

eξ(τ−s)M∗E sup
θ≤0
‖ϕ(θ)‖pH e

−ητdτ +
∫ 0

−∞
eξ(τ−s)M0E ‖ϕ(0)‖pH e

−µτdτ

] 2
p

ds

} p
2

≤ Kp
hCpL

p
σξ

1−p

{∫ t

0

e−2γ(t−s)

[(
M∗E supθ≤0 ‖ϕ(θ)‖pH

ξ − η
e−ηs

) 2
p

+
(
M0E ‖ϕ(0)‖pH

ξ − µ
e−ξs

) 2
p

]
ds

} p
2

(3.7)

≤ 2
p−2
2 Kp

hCpL
p
σξ

1−p

[
M∗E supθ≤0 ‖ϕ(θ)‖pH

ξ − η

(
p

2pγ − 2η

) p
2

e−ηt +
M0E ‖ϕ(0)‖pH

ξ − µ

(
p

2pγ − 2ξ

) p
2

e−ξt

]
.

Recalling (3.3), from (3.4) to (3.7), we can deduce that there exists M1 ≥ 1 such that

E ‖(πx)(t)‖pH ≤M1E sup
θ≤0
‖ϕ(θ)‖pH e

−ηt.

Since each term of (πx)(t) is Ft-measurable then the Ft-measurability of (πx)(t) is easily verified. It
follows that π is well defined.
Thus, we conclude that π(S) ⊂ S.
It remains to show that π has a unique fixed point. For any x, y ∈ S, we have
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E ‖(πx)(t)− (πy)(t)‖pH ≤ 3p−1
3∑
i=1

Ji. (3.8)

We now estimate each Ji in (3.8). Noting that x(s) = y(s) = ϕ(s) for s ≤ 0, by assumption (H3), we have

J1 = E ‖G(t, x(t− ρ(t)))−G(t, y(t− ρ(t)))‖pH
≤ KGE |x(t− ρ(t))− y(t− ρ(t))|pH
≤ KG sup

t≥0
E ‖x(s)− y(s)‖pH .

By standard computations involving (H6) and Hölder inequality we obtain

J2 = E

∥∥∥∥∫ t

0

R(t− s)
(
b(s,

∫ 0

−∞
g(θ, x(s+ θ)))dθ)− b(s,

∫ 0

−∞
g(θ, y(s+ θ)))dθ

)
ds

∥∥∥∥p
H

≤ Kp
bE

[∫ t

0

e−γ(t−s)
∥∥∥∥∫ 0

−∞
g(θ, x(s+ θ))dθ −

∫ 0

−∞
g(θ, y(s+ θ))dθ

∥∥∥∥
H

ds

]p
≤ Kp

bE

(∫ t

0

e−γ(t−s)ds

)p−1 ∫ t

0

(∫ 0

−∞

∥∥∥e−γ(t−s)p

(
g(θ, x(s+ θ))− g(θ, y(s+ θ))

)∥∥∥
H
dθ

)p
ds

≤ Kp
b γ

1−pLpg

∫ t

0

(∫ s

−∞
eξ(τ−s)dτ

)p−1(∫ s

−∞
e−γ(t−s)eξ(τ−s)E ‖x(τ)− y(τ)‖pH dτ

)p
ds

≤ Kp
b γ
−pLpgξ

−p sup
s≥0

E ‖x(s)− y(s)‖pH ,

and

J3 = E

∥∥∥∥∫ t

0

R(t− s)
[
h(s,

∫ 0

−∞
σ(θ, x(s+ θ)))dθ − h(s,

∫ 0

−∞
σ(θ, y(s+ θ)))dθ

]
dW (s)

∥∥∥∥p
H

≤ CpK
p
h


∫ t

0

e−2γ(t−s)

[
E

∥∥∥∥∫ 0

−∞
(σ(θ, x(s+ θ))− σ(θ, y(s+ θ))) dθ

∥∥∥∥p
H

] 2
p

ds


p
2

≤ CpK
p
hL

p
σ

{∫ t

0

e−2γ(t−s)
[
E

(∫ s

−∞
eξ(τ−s) ‖x(τ)− y(τ)‖H dτ

)p] 2
p

ds

} p
2

≤ CpK
p
hL

p
σ


∫ t

0

e−2γ(t−s)

[(∫ s

−∞
eξ(τ−s)dτ

)p−1 ∫ s

−∞
eξ(τ−s)E ‖x(τ)− y(τ)‖H dτ

] 2
p

ds


p
2

≤ CpK
p
hL

p
σξ
−p
[∫ t

0

e−2γ(t−s)ds

] p
2

sup
s≥0

E ‖x(s)− y(s)‖pH

≤ CpK
p
hL

p
σξ
−p(2γ)

−p
2 sup
s≥0

E ‖x(s)− y(s)‖pH .

Consequently, we have

sup
s≥0

E ‖(πx)(t)− (πy)(t)‖pH ≤ 3p−1
[
KG +Kp

bL
p
g(ξγ)−p + (2γ)

−p
2 Kp

hL
p
σξ
−pCp

]
sup
s≥0

E ‖x(s)− y(s)‖pH ,

and by (3.1) it follows that π is contractive. Thus, the Banach fixed point principle implies that there
exists a unique x(·) ∈ S which solves (1.1) with x(s) = ϕ(s) on (−∞, 0], and furthermore, x(t) decays
exponentially to zero in pth-moment. The proof is therefore complete.
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4 Example

In this section we make use of our previous existence result to study the existence, uniqueness and
asymptotic behavior of mild solutions to concrete neutral stochastic partial integrodifferential equations
with infinite delays. For that, let Ω ⊂ R2 be an open subset whose boundary ∂Ω is sufficiently regular.
Let H = H1

0 (Ω)× L2(Ω) and consider the linear operator A whose domain is given by
D(A) = (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω) and

A

(
x
y

)
=
(

y
α(0)x′′ − β(0)y

)
where α(.) , β(.) are real-valued functions of class C2 on [0,∞) such that α(0) > 0 and β(0) > 0.
In Chen [21] it is proved that A is the infinitesimal generator of a uniformly exponentially stable
C0-semigroup (T (t))t≥0 on H1

0 (Ω)× L2(Ω). In what follows, we will assume M̃ , γ are positive constants
and that ‖T (t)‖ ≤ M̃e−γt for all t > 0. Let B(t) = F (t)A where F : H1

0 (Ω)× L2(Ω)→ H1
0 (Ω)× L2(Ω) is

the operator family defined by

F = (Fij) =

 0 0

−β′(t) + β(0)
α′(t)
α(0)

α′(t)
α(0)

 .

Assume that

max
{∣∣∣∣α′(t)α(0)

∣∣∣∣ , ∣∣∣∣−β′(t) + β(0)
α′(t)
α(0)

∣∣∣∣} ≤ γ

2M̃
e−γt, t ≥ 0,

max

{∣∣∣∣∣α
′′
(t)

α(0)

∣∣∣∣∣ ,
∣∣∣∣∣−β′′(t) + β(0)

α
′′
(t)

α(0)

∣∣∣∣∣
}
≤ γ2

4M̃2
e−γt, t ≥ 0. (4.1)

From Theorem 4.1 in Grimmer [12] we deduce that the abstract integro-differential system

x′(t) = Ax(t) +
∫ t

0

B(t− s)x(s)ds,

possesses an associated uniformly exponentially stable resolvent of operators (R(t))t≥0 on H1
0 (Ω)× L2(Ω)

with
‖R(t)‖ ≤ M̃e

−γ
2 t, for t ≥ 0.

This integro-differential system was discussed by Grimmer to illustrate his result in (Theorem 4.1,
Ref.[12]) about exponential stability for resolvent operators.
Here, we will use the phase space B := Cr × Lp(z,H1

0 (Ω)× L2(Ω)) r ≥ 0, 1 ≤ p <∞. Let
z : (−∞,−r)→ R be a positive (Lebesgue) integrable function and assume that there exists a nonnegative
and locally bounded function γ1 on (−∞, 0] such that z(ξ + θ) ≤ γ1(u)z(θ) for all u ≤ 0 and
θ ∈ (−∞,−r) \Nξ where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero.
The space Cr × Lp(z,H1

0 (Ω)× L2(Ω)) consists of the collection of all functions
ϕ : (−∞, 0]→ H1

0 (Ω)× L2(Ω) such that is continuous on [−r, 0], Lebesgue mesurable and z‖ϕ‖p is
Lebesgue integrable on (−∞,−r). The seminorm in ‖.‖B is defined by

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}+
(∫ −r
−∞

z(θ)‖ϕ(θ)‖pdθ
)1/p

.
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Under the previous assumptions, the phase space B verifies the axioms: (A1), (A2),(A3),(A4), see
Theorem 1.3.8 in [29]. Moreover, when r = 0 we have that L = 1,

v(t) = γ(−t)1/2,

u(t) = 1 +
(∫ 0

−t
h(θ)dθ

)1/2

for t ≥ 0.

Consider the neutral system

∂

∂t

[
β(t, u) +

β(t− ρ(t), u)
1 + |β(t− ρ(t), u)|

]
= A

[
β(t, u) +

β(t− ρ(t), u)
1 + |β(t− ρ(t), u)|

]

+
∫ t

0

F (t− s)A
[
β(s, u) +

β(s− ρ(s), u)
1 + |β(s− ρ(s), u)|

]
ds

+f1

(
t,

∫ 0

−∞
α2e

ξθβ(t+ θ, u)dθ
)
dt+ f2

(
t,

∫ 0

−∞
α3e

ξθβ(t+ θ, u)dθ
)
dw(t), for t ≥ 0

β(θ, u) = β0(θ, u) for θ ∈]−∞, 0] and u ≤ 0,
(4.2)

where ξ, αi > 0, i = 1, 2, 3, w(t) denotes an R-valued Brownian motion, ρ : [0,+∞)→ [0, r].
Let

G(t, β(t− ρ(t), u)) =
β(t− ρ(t), u)

1 + |β(t− ρ(t), u)|
,

b(t,
∫ 0

−∞
g(θ, β(t+ θ, u))dθ) = f1

(
t,

∫ 0

−∞
α2e

ξθβ(t+ θ, u)dθ
)
,

h(t,
∫ 0

−∞
σ(θ, β(t+ θ, u))dθ) = f2

(
t,

∫ 0

−∞
α3e

ξθβ(t+ θ, u)dθ
)
.

If we put {
x(t) = β(t, u) for t ≥ 0 and u ≤ 0

ϕ(θ)(u) = β0(θ, u) for θ ∈]−∞, 0] and u ≤ 0,

then equation (4.2) takes the following abstract form

d [x(t) +G(t, x(t− ρ(t)))] = A [x(t) +G(t, x(t− ρ(t)))] dt

+
∫ t

0

B(t− s) [x(s) +G(s, x(s− ρ(s)))ds] dt

+b(t,
∫ 0

−∞
g(θ, x(t+ θ))dθ)dt+ h(t,

∫ 0

−∞
σ(θ, x(t+ θ))dθ)dw(t), t ≥ 0,

x0 = ϕ,

(4.3)

We assume that there exist some positive constantsKfi , i = 1, 2 such that for any x, y ∈ H t ≥ 0,

‖f1(t, x)− f1(t, y)‖H ≤ Kf1 ‖x− y‖H , ‖f2(t, x)− f2(t, y)‖H ≤ Kf2 ‖x− y‖H .
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Then it is obvious that the assumption (H1)-(H6) are satisfied with

KG = 1,Kb = Kf1 ,Kh = Kf2 , LG = α2, Lσ = α3.

Thus, by Theorem 3.1, if
E ‖ϕ(t)‖pH ≤M0E ‖ϕ(0)‖pH e

−µt, t ≤ 0,

for some M0 ≥ 1 and 0 < µ < ξ, then there exists a unique mild solution of (4.3) and decays exponentially
to zero in p-th moment provided

3p−1
[
KG +Kp

bL
p
g(ξγ)−p + (2γ)

−p
2 Kp

hL
p
σξ
−pCp

]
< 1.
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