772 research outputs found

    Information and Communication Technologies (ICTS) as a Tool for Intercultural Education. A collaborative experience in secondary education in Tlapa de Comonfort, Guerrero, Mexico

    Get PDF
    This paper discusses the collaborative experience of creating educational materials for a secondary school in Tlapa de Comonfort, Guerrero, México. In this school, students from Nahuatl, Tun savi, Me'phaa and Spanish speaking communities live and learn together. The intercultural context provides challenges for science education that we sought to address. The use of collaborative technologies in science classes has made visible the cultural diversity in the classroom, helping students and teachers recognize themselves as active agents in the construction of common knowledge and in sharing their\ud knowledge. This experience also shows the importance of ICTs as technologies of expression that reinforce individual and collective identity in intercultural contexts

    Novel constraints on fermionic dark matter from galactic observables I: The Milky Way

    Get PDF
    We have recently introduced a new model for the distribution of dark matter (DM) in galaxies based on a self-gravitating system of massive fermions at finite temperatures, the Ruffini–Argü elles–Rueda (RAR) model. We show that this model, for fermion masses in the keV range, explains the DM halo of the Galaxy and predicts the existence of a denser quantum core at the center. We demonstrate here that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for the finite Galaxy size, defines a new solution with a central core which represents an alternative to the black hole (BH) scenario for SgrA*. For a fermion mass in the range mc2=48–345 keV, the DM halo distribution is in agreement with the Milky Way rotation curve data, while harbors a dense quantum core of about 4×106M⊙ within the S2-star pericenter.Instituto de Astrofísica de La PlataConsejo Nacional de Investigaciones Científicas y Técnica

    Arquitectura Computacional para la Inferencia deuna CNN Cuantizada para Detectar FibrilaciónAuricular

    Get PDF
    Atrial Fibrillation is a common cardiac arrhythmia, which is characterized by an abnormal heartbeat rhythm that can be life-threatening. Recently, researchers have proposed several Convolutional Neural Networks (CNNs) to detect Atrial Fibrillation. CNNs have high requirements on computing and memory resources, which usually demand the use of High Performance Computing (eg, GPUs). This high energy demand is a challenge for portable devices. Therefore, efficient hardware implementations are required. We propose a computational architecture for the inference of a Quantized Convolutional Neural Network (Q-CNN) that allows the detection of the Atrial Fibrillation (AF). The architecture exploits data-level parallelism by incorporating SIMD-based vector units, which is optimized in terms of computation and storage and also optimized to perform both the convolutional and fully connected layers. The computational architecture was implemented and tested in a Xilinx Artix-7 FPGA. We present the experimental results regarding the quantization process in a different number of bits, hardware resources, and precision. The results show an accuracy of 94% accuracy for 22-bits. This work aims to be the basis for the future implementation of a portable, low-cost, and high-reliability device for the diagnosis of Atrial Fibrillation.La fibrilación auricular es una arritmia cardíaca común, que se caracte-riza por un ritmo cardíaco anormal que puede poner en peligro la vida.Recientemente, se han propuesto varias Redes Neuronales Convoluciona-les (CNNs, por sus siglas en inglés) para detectar la fibrilación auricular.Las CNN tienen altos requisitos de recursos informáticos y de memoria,lo que generalmente demanda el uso Computación de Altro Rendimientocomo por ejemplo GPUs. Esta alta demanda de energía es un desafío pa-ra los dispositivos portátiles. Por lo tanto, se requieren implementacionesde hardware eficientes. Proponemos una arquitectura computacional pa-ra la inferencia de una Red Neural Convolucional Cuantizada (Q-CNN)que permite la detección de la Fibrilación Auricular (FA). La arquitecturaaprovecha el paralelismo a nivel de datos, incorporando unidades vecto-riales basadas en SIMD, que están optimizadas en términos de cálculoy almacenamiento. El diseño también se optimizó para realizar tanto lascapas convolucionales como las capas completamente conectadas. La ar-quitectura computacional se implementó y probó en una FPGA XilinxArtix-7. Presentamos los resultados experimentales con respecto al proce-so de cuantización en un número diferente de bits, recursos de hardwarey precisión. Los resultados muestran una precisión del 94 % para 22 bits.Este trabajo pretende ser la base para la futura implementación de undispositivo portátil, de bajo costo y alta confiabilidad para el diagnósticode Fibrilación Auricular

    Congenital anomalies of the optic nerve

    Get PDF
    AbstractCongenital optic nerve head anomalies are a group of structural malformations of the optic nerve head and surrounding tissues, which may cause congenital visual impairment and blindness. Each entity in this group of optic nerve anomalies has individually become more prevalent as our ability to differentiate between them has improved due to better characterization of cases. Access to better medical technology (e.g., neuroimaging and genetic analysis advances in recent years) has helped to expand our knowledge of these abnormalities. However, visual impairment may not be the only problem in these patients, some of these entities will be related to ophthalmologic, neurologic and systemic features that will help the physician to identify and predict possible outcomes in these patients, which sometimes may be life-threatening. Herein we present helpful hints, associations and management (when plausible) for them

    Hinting a dark matter nature of Sgr A* via the S-stars

    Get PDF
    The motion data of the S-stars around the Galactic Centre gathered in the last 28 yr imply that Sgr A* hosts a supermassive compact object of about 4×106M⊙⁠, a result awarded with the Nobel Prize in Physics 2020. A non-rotating black hole (BH) nature of Sgr A* has been uncritically adopted since the S-star orbits agree with Schwarzschild geometry geodesics. The orbit of S2 has served as a test of general relativity predictions such as the gravitational redshift and the relativistic precession. The central BH model is, however, challenged by the G2 post-peripassage motion and by the lack of observations on event-horizon-scale distances robustly pointing to its univocal presence. We have recently shown that the S2 and G2 astrometry data are better fitted by geodesics in the spacetime of a self-gravitating dark matter core–halo distribution of 56 keV-fermions, ‘darkinos’, which also explains the outer halo Galactic rotation curves. This letter confirms and extends this conclusion using the astrometry data of the 17 best-resolved S-stars, thereby strengthening the alternative nature of Sgr A* as a dense core of darkinos.Fil: Becerra Vergara, E. A.. Università di Roma; ItaliaFil: Argüelles, Carlos Raúl. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Krut, A.. Università di Roma; ItaliaFil: Rueda, J. A.. Università di Roma; ItaliaFil: Ruffini, R.. Università di Roma; Itali

    The role of self-interacting right-handed neutrinos in galactic structure

    Get PDF
    It has been shown previously that the DM in galactic halos can be explained by a self-gravitating system of massive keV fermions ('inos') in thermodynamic equilibrium, and predicted the existence of a denser quantum core of inos towards the center of galaxies. In this article we show that the inclusion of self-interactions among the inos, modeled within a relativistic mean-field-theory approach, allows the quantum core to become massive and compact enough to explain the dynamics of the S-cluster stars closest to the Milky Way's galactic center. The application of this model to other galaxies such as large elliptical harboring massive central dark objects of ∼ 109 Mo is also investigated. We identify these interacting inos with sterile right-handed neutrinos pertaining to minimal extensions of the Standard Model, and calculate the corresponding total cross-section σ within an electroweak-like formalism to be compared with other observationally inferred cross-section estimates. The coincidence of an ino mass range of few tens of keV derived here only from the galactic structure, with the range obtained independently from other astrophysical and cosmological constraints, points towards an important role of the right-handed neutrinos in the cosmic structure.Facultad de Ciencias Astronómicas y Geofísica

    Geodesic motion of S2 and G2 as a test of the fermionic dark matter nature of our Galactic core

    Get PDF
    The motion of S-stars around the Galactic center implies that the central gravitational potential is dominated by a compact source, Sagittarius A∗ (Sgr A∗), which has a mass of about 4 × 106 M⊠and is traditionally assumed to be a massive black hole (BH). The explanation of the multiyear accurate astrometric data of the S2 star around Sgr A∗, including the relativistic redshift that has recently been verified, is particularly important for this hypothesis and for any alternative model. Another relevant object is G2, whose most recent observational data challenge the scenario of a massive BH: its post-pericenter radial velocity is lower than expected from a Keplerian orbit around the putative massive BH. This scenario has traditionally been reconciled by introducing a drag force on G2 by an accretion flow. As an alternative to the central BH scenario, we here demonstrate that the observed motion of both S2 and G2 is explained in terms of the dense core-diluted halo fermionic dark matter (DM) profile, obtained from the fully relativistic Ruffini-Argüelles-Rueda (RAR) model. It has previously been shown that for fermion masses 48-345 keV, the RAR-DM profile accurately fits the rotation curves of the Milky Way halo. We here show that the solely gravitational potential of such a DM profile for a fermion mass of 56 keV explains (1) all the available time-dependent data of the position (orbit) and line-of-sight radial velocity (redshift function z) of S2, (2) the combination of the special and general relativistic redshift measured for S2, (3) the currently available data on the orbit and z of G2, and (4) its post-pericenter passage deceleration without introducing a drag force. For both objects, we find that the RAR model fits the data better than the BH scenario: The mean of reduced chi-squares of the time-dependent orbit and z data are â χ 2â.Fil: Becerra Vergara, E. A.. International Center for Relativistic Astrophysics Network; Italia. Università di Roma; Italia. Universidad Industrial Santander; ColombiaFil: Argüelles, Carlos Raúl. International Center for Relativistic Astrophysics Network; Italia. Università di Roma; Italia. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Krut, A.. International Center for Relativistic Astrophysics Network; Italia. Università di Roma; ItaliaFil: Rueda, J. A.. International Center for Relativistic Astrophysics Network; Italia. Università di Roma; Italia. Università di Ferrara; Italia. Istituto de Astrofisica e Planetologia Spaziali; ItaliaFil: Ruffini, Remo. International Center for Relativistic Astrophysics Network; Italia. Università di Roma; Italia. Università di Ferrara; Italia. Istituto de Astrofisica e Planetologia Spaziali; Itali

    Strong lensing by fermionic dark matter in galaxies

    Get PDF
    It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ?1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used for the deflection angle which may become bigger than 2 π . An important difference in comparison to BHs is in the fact that quantum DM cores do not show a photon sphere; this implies that they do not cast a shadow (if they are transparent). Similar conclusions apply to the other DM distributions for other fermion masses in the above-specified range and for other galaxy types.Facultad de Ciencias Astronómicas y Geofísica

    La actividad física como estrategia pedagógica para fortalecer las habilidades de interacción social en los estudiantes de noveno semestre del programa de licenciatura en educación física de la universidad cesmag en la ciudad de san juan de pasto

    Get PDF
    En la población joven, especialmente aquella que pertenece a las universidades, se han presentado diferentes situaciones a lo largo de su formación, que infieren tanto positiva como LA ACTIVIDAD FÍSICA Y LAS HABILIDADES DE INTERACCIÓN SOCIAL negativamente, en actitudes, hábitos y diálogos, que requieren de una mayor atención desarrollados en su vida académica. las habilidades de interacción social, al ser características muy importantes al nivel personal y grupal, se deben complementar con actividades que fomenten el trabajo interpersonal y sociales como principio fundamental de la formación ética e integral de los futuros profesionales. Campo et al., (2016).In the young population, especially those who belong to universities, there have been presented different situations throughout their training, which infer both positive and PHYSICAL ACTIVITY AND SOCIAL INTERACTION SKILLS negatively, in attitudes, habits and dialogues, which require greater attention developed in their academic life. social interaction skills, being characteristic very important at the personal and group level, should be complemented with activities that promote interpersonal and social work as a fundamental principle of ethical training and integral of future professionals. Field et al., (2016)
    corecore