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Abstract
Atrial Fibrillation is a common cardiac arrhythmia, which is character-
ized by an abnormal heartbeat rhythm that can be life-threatening. Re-
cently, researchers have proposed several Convolutional Neural Networks
(CNNs) to detect Atrial Fibrillation. CNNs have high requirements on
computing and memory resources, which usually demand the use of High
Performance Computing (eg, GPUs). This high energy demand is a chal-
lenge for portable devices. Therefore, efficient hardware implementations
are required. We propose a computational architecture for the inference of
a Quantized Convolutional Neural Network (Q-CNN) that allows the de-
tection of the Atrial Fibrillation (AF). The architecture exploits data-level
parallelism by incorporating SIMD-based vector units, which is optimized
in terms of computation and storage and also optimized to perform both
the convolutional and fully connected layers. The computational architec-
ture was implemented and tested in a Xilinx Artix-7 FPGA. We present
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the experimental results regarding the quantization process in a different
number of bits, hardware resources, and precision. The results show an ac-
curacy of 94% accuracy for 22-bits. This work aims to be the basis for the
future implementation of a portable, low-cost, and high-reliability device
for the diagnosis of Atrial Fibrillation.
Keywords: Atrial fibrillation; automatic detection; FPGA
implementation; quantized convolutional neural network.

Arquitectura Computacional para la Inferencia de
una CNN Cuantizada para Detectar Fibrilación
Auricular

Resumen
La fibrilación auricular es una arritmia cardíaca común, que se caracte-
riza por un ritmo cardíaco anormal que puede poner en peligro la vida.
Recientemente, se han propuesto varias Redes Neuronales Convoluciona-
les (CNNs, por sus siglas en inglés) para detectar la fibrilación auricular.
Las CNN tienen altos requisitos de recursos informáticos y de memoria,
lo que generalmente demanda el uso Computación de Altro Rendimiento
como por ejemplo GPUs. Esta alta demanda de energía es un desafío pa-
ra los dispositivos portátiles. Por lo tanto, se requieren implementaciones
de hardware eficientes. Proponemos una arquitectura computacional pa-
ra la inferencia de una Red Neural Convolucional Cuantizada (Q-CNN)
que permite la detección de la Fibrilación Auricular (FA). La arquitectura
aprovecha el paralelismo a nivel de datos, incorporando unidades vecto-
riales basadas en SIMD, que están optimizadas en términos de cálculo
y almacenamiento. El diseño también se optimizó para realizar tanto las
capas convolucionales como las capas completamente conectadas. La ar-
quitectura computacional se implementó y probó en una FPGA Xilinx
Artix-7. Presentamos los resultados experimentales con respecto al proce-
so de cuantización en un número diferente de bits, recursos de hardware
y precisión. Los resultados muestran una precisión del 94% para 22 bits.
Este trabajo pretende ser la base para la futura implementación de un
dispositivo portátil, de bajo costo y alta confiabilidad para el diagnóstico
de Fibrilación Auricular.

Palabras clave: Detección automática; fibrilación auricular;
implementación en FPGA; red neuronal convolucional cuantizada.

1 Introduction

Atrial fibrillation (AF) is an arrhythmia that presents irregular heartbeats,
and it is associated with an increase in heart rate due to a disorder in
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the electrical signals that activate the atria. This type of arrhythmia o-
ccurs asymptomatically, to say, there are no symptoms until the first acute
episode [1]. However, it is difficult to accurately detect AF in the early
stage, and well-trained professional physicians are required to accurately
determine the feature information of ECG [2]. Therefore, it is important
to develop fast and accurate algorithms for AF automatic detection.

To address this challenge, several studies have proposed the convolu-
tional neural networks (CNN) for the detection of atrial fibrillation with
high levels of accuracy [2],[3],[4],[5]. Moreover, some researches have shown
that custom hardware for the inference of CNNs could surpass the efficiency
of general-purpose processor equivalents in terms of throughput and energy
consumption [6].

Quantization is an effective strategy that reduces the precision of both
weights and activations. The quantization of a CNN is the first step before
implementing a CNN in a custom-hardware.

FPGAs have become striking to implement Q-CNNs because of their
flexibility and high energy efficiency. These versatile integrated circuits pro-
vide programmable logic blocks and a configurable interconnection, which
enable the construction of custom accelerator architectures in the custom
hardware [7]. However, there are still many challenges because the CNNs
are known for demanding a massive amount of computational and memory
resources.

Strategies to perform the inference process at the edge are currently
a hot topic in hardware researches. The authors in [8] propose a spe-
cific dataflow to minimize the memory access and data movement while
maximizing the resource utilization. In [9] is proposed a Winograd trans-
formation-based algorithm to optimize the convolution process, which uses
a cross-layer strategy. The algorithm allows a reduction of over 90% in
the transfer process of the intermediate data. The authors in [10] pro-
poses an accelerator to handle network layers of different scales through
parameter configuration and maximizes bandwidth by using a data stream
interface. In [11] is proposed a reconfigurable CNN accelerator that re-
duces the number of off-chip memory accesses by combining convolution
and pooling operations and using a 16-bit dynamic fixed-point format. For
further details in custom hardware accelerators, the readers may refer to
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recent surveys on this topic in [12],[13]. The first one ([12]) focuses on
custom hardware in general for CNNs. The second one ([13]) focuses on
FPGA-based accelerators for CNNs.

In this work, we propose a computational architecture for the inference
process of a quantized version of the Castillo-Granados CNN [14]. Our
goal is to design a specific purpose processor that carries out the inference
process by using the minimum amount of computational and memory re-
sources at high accuracy possible. We designed a SIMD architecture (Single
Instruction, Multiple Data) with a single vector unit that is optimized to
perform both the convolution and fully connected layers. This processor
allows the inference of a 22-bits Q-CNN version [14] and achieves a 94%
accuracy.

This paper is organized as follows: Section II gives a description of
the CNN used. Section III describes the quantization process of CNN.
Section IV describes the design of the computational architecture. Section
V summarizes the main results of this work. Finally, the article is closed
with the conclusions in Section VI.

2 Convolutional neural network

A typical CNN is made up of different layers. In each layer, there is a
certain amount of connected filters that extract information for subsequent
layers. The input data passes through layers to generate a feature vector.
Then, a classifier is used in the characteristic vector obtained to produce
the result of the classification. There are mainly three types of layers in
a CNN model: convolutional layers, grouping layers, and fully connected
(FC) layers.

In this paper, the CNN Castillo-Granados [14] is implemented (Figure
1). This model was trained for the detection of AF from ECG signals.
These ECG signals were registered by the Einthoven triangle method [15]
and stored in a vector of 500 samples with a sampling rate of 250 [sam-
ples/s]. This CNN achieved an accuracy of 97.44% using a 64-bit double-
float format [14].
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Figure 1: Castillo-Grandos CNN Architecture [14]

The CNN has four convolution layers followed by three FC layers. Table
1 summarizes the characteristics of the layers.

Table 1: Layers description: Layer type, Output dimensions, Number of parame-
ters, Kenel Size and number of kernels (#) and stride used. (Adapted from [14])

Neural Network Architecture
Layer type Output dim. Parameters K. size, # Stride

Input (500.1) - - -
Convolution (474.3) 84 (27.3) 1
Max-pooling (237.3) - - 2
Convolution (224.10) 430 (14.10) 1
Max-pooling (112.10) - - 2
Convolution (110.10) 310 (3.10) 1
Max-pooling (55.10) - - 2
Convolution (52.10) 410 (4.10) 1
Max-pooling (26.10) - - 2

Flatten 260 - - -
Fully-connected 30 7830 - -
Fully-connected 10 310 - -
Fully-connected 1 11 - -
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The network has a total of 9385 parameters and 377428 fixed-point
operations (additions and multiplications). Figures 2a and 2b show the
distribution percentages of the number of operations carried out and the
number of parameters required in both the convolutional and FC layers.
Note that, on the one hand, the convolutional layers perform the highest
percentage of operations (96% vs. 4%). On the other hand, the FC layers
require the highest percentage of parameters (87% vs. 13%).

Figure 2: Percentage of operations and parameters for convolutional and fully
connected layers.

3 Quantization process

The implementation of the inference process in custom hardware requires a
quantization process. This process allows us to change 64-bit floating-point
format for a reduced number of bits by using a fixed-point format. This
change reduces considerably the amount of computational and memory re-
sources. Figure 3 shows the results of the fake quantization process that
was carried out using Matlab. Note that by using just 12 bits an accu-
racy of 95% is achieved. Also, note that from 12 bits onwards there is no
considerable increase in the accuracy. However, in the hardware implemen-
tation, there are some issues related to the truncation error because of the
reduction in the number of bits, which will be analyzed in Section 5.

|140 Ingeniería y Ciencia



Andrés Jaramillo, Laura Vargas, and Carlos Fajardo

Figure 3: Relationship between the number of bits and the accuracy

4 Design description

Figure 4 shows a block diagram of the computational architecture designed
for the inference of the CNN of Figure 1.

Figure 4: Block diagram of computational architecture. *Dashed line: Control
signal. Continuous line:Data

The design has an operation module that computes the input data with
the parameters of each layer. This module is controlled by a Finite State
Machine (FSM control) that addresses the computational resources that
carry out the mathematical operations.

We have designed a computational strategy that allows us to use a
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single operation module to perform both the convolutional and FC layers.
This strategy demands the use of buffers to temporarily store output re-
sults. Thus, the proposed architecture achieves a considerable reduction in
the use of computational resources. However, this strategy penalizes the
throughput because the reuse strategy does not allow a pipeline implemen-
tation.

A functional description of the modules in Figure 4 is given below :

• Control FSM : State machine addresses the flow of data processed in
each module. Also, the FSM controls the Operation Module to per-
form all layers. Finally, the FMS carries out the write/read memory
process.

• BRAM : Memory to store all parameters of the CNN.

• Operations Module: adaptive module that computes convolution or
FC operations.

• Buffer : Set of two memories that store the temporary outputs of each
layer, alternating writing, and reading, the read data is returned as
inputs of the next layer.

• Input ECG : Memories that stores the ECG segments. In this design,
there are two Input ECG memories, which allow us to read a new
segment while a previous segment is being processing.

• External Hardware: ECG signals are acquired through External Hard-
ware. This module communicates the FPGA with the ADC using the
SPI protocol. External hardware provides the data to Input ECG in
groups of 500 samples with a sampling frequency of 250 [samples/s].

4.1 Design of the operations module

The operations processing module has been designed based on the convo-
lution layers since these contain the largest number of operations in the
architecture (Figure 2).

The Operations Module uses a loop unrolling strategy for the kernels
in the convolution layers [16]. A SIMD-based architecture carries out this
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strategy by a sliding buffer, which contains 27 multipliers, 27 adders, and
27 shift registers. This custom processor allows the reuse of the hardware
for all layers.

Figure 5: Data flow in Operations Module

Figure 5 illustrates the configuration of the logistic resources used for
the execution of operations. Note that Kernel and input data (Section 2)
flow from left to right in each clock cycle until all 27 registers are filled.
Once the first 27 data are saved on the registers, a first temporary data out
is obtained. Then, the input data is 1-left shifted and a second temporary
data is obtained, and so on. All temporary data are accumulated in a
specific position of the Buffer memory.

It is important to note that the dimensions change from one layer to
another, so the bias is added in the last tensor dimension.

The FSM controls the data flow by modifying the control signals. The
design can be configured to calculate both convolutional and FC layers.
This strategy saves the use of logical resources for the description of layers
that execute different operations. If better latency is required, more para-
llelism can be applied (more than 27 operations per clock cycle) and more
than one kernel at a time.
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4.2 Hard-limit transfer function

The original design of the neural network was performed with the Sigmoid
activation function [17] (Figure 6). This function is applied after the last
FC layer. We replaced the Sigmoid function with a Hard-limit function to
reduce computational resources. This function was implemented by using
a simple not gate.

Figure 6: Sigmiod function and Hard-limit function

Our results suggest that the use of a Hard-limit function does not affect
the accuracy of the network.

5 Results

The computational architecture was implemented on the Basys 3 Deve-
lopment Board which is based on the latest Artix-7 FPGA from Xilinx.
The synthesis, simulation, and debugging was carried out using the Xilinx
Vivado Design Suite R© software with the 2019.1 version.

The design was tested with a set of 1000 ECG signals of the MIT BIH
Atrial Fibrillation database [18]. These signals were quantized from 12 to 32
bits by using Matlab (Section 3). Several tests were developed to validate
intermediate and final results. The intermediate results were validated by
ILA Tool from Vivado R©.

The percentage truncation error (Et) is generated for the reduction in
the number of bits and calculated by Equation 1.

Et =

∣∣∣∣CHR− SR

SR

∣∣∣∣× 100% (1)
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Where CHR is the Custom Hardware Result and SR is Software Result
(Matlab). The Et depends on the number of bits. The error increases when
the number the bits is reduced. Besides, this error is propagated through
all layers. Thus the bigger Et is found in the last layer. For example, the
Et, for 22 bits, in the last layer was around 0.79%.

5.1 Hardware resource utilization

Figure 7 shows the percentages (concerning the total available in the FPGA)
of resource utilization for a different number of bits. It can be observed
that between 12 and 22 bits there is no change in the percentage of DSP
utilization.

Figure 7: Percentage of utilization for different amounts of bits of quantization

5.2 Accuracy regarding the number of bits

A test was performed using the set of 1000 ECG signals, which 500 corres-
ponds to Fibrillation signals and the other 500 with Not fibrillated signals.
Table 2 summarizes the results.
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Table 2: Accuracy on the inferences process for
12 and 22 quantization bits

Bit quantity Accuracy
12-bits 88 [%]
22-bits 94 [%]

Note that for 12 bits there is an important reduction in the accuracy,
which is due to the truncation error. Taking into account the accuracy and
the amount of resources required, a 22-bits quantization is adopted.

5.3 Performance

A clock frequency of 34.6 [KHz] was implemented, satisfying the required
throughput of an inference every two seconds. Table 3 summarizes the
main results to obtain maximum performance on FPGA.

Table 3: Feature performance summary

Feature performance
Throughput required 0.5 [inferences/s]
Maximum clock frequency (MCF) 25,5 [MHz]
Latency at MCF 1,358 [ms]
Throughput at MCF 736 [inferences/s]

Figure 8 shows the breakdown of the execution time to calculate each
CNN layer. Note that convolution operations are the ones that consume the
most time, therefore, if better latency is required, parallelism techniques
can be applied.
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Figure 8: Timing breakdown for the inference process

6 Conclusions

A computational architecture was proposed to carry out the inference pro-
cess of a Q-CNN, which allows the detection of Atrial Fibrillation.

The design is an architecture SIMD-based vector unit with a sliding
buffer that is optimized for both convolutional and FC layers. The design
aims to reduce the amount of computational and memory resources. The
architecture has a throughput of an inference every two seconds, i.e. it
works at 34.6 [KHz]. However, the design can achieve a throughput of 736
[inferences/s] at its is maximum design frequency (25.5[Mhz]). The tests
show accuracy in the inference of 94% for 22-bits of quantization, which
moves approximately 2.97% away from the inference in 64-bits software.
Future work focuses on the use of aware quantization strategies, which can
improve accuracy by using a lower amount of bits [19],[20]. We also will
test different approximation strategies, which have also proved to improve
the accuracy [21]. We aim to use this design on the implementation of a
Q-CNN-based portable device for automatic detection of AF.
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