17 research outputs found

    Next Generation Protocol: Innovating a Resilient Future

    Get PDF
    Conventional practices do not account for product life beyond end-of-sale – these practices are not sustainable. We have developed an end-of-life protocol that includes a metric that we call the Recovery Rating. The objectives of this Next Generation Protocol, beyond supporting the United Nations’ Sustainable Development Goals, are to encourage the production of goods designed for recovery and to promote the collaboration between consumers, the public, and the private sector to recover goods at their end-of-life. The Recovery Rating that we propose evaluates and quantifies recovery potential of products. The Recovery Rating, which is normed against embodied energy from the Cambridge Engineering Selector by Granta Design, accounts for different tiers of recovery: product, component, and material, and different recovery methods at each tier and material family. We will present the results of our Next Generation Protocol using three case studies: 1) disposal, single use PET bottle, 2) Nalgene® reusable bottle, and 3) vacuum insulated, reusable metal bottle. The findings indicate the Next Generation Protocol produces a viable Recovery Rating for the material tier. We will also present survey data on potential user reactions to symbolic, numerical, and graphical versions of the Recovery Rating. The Recovery Ratings for the product and component tiers require considerations that have yet to be accounted for, such as number of uses and production/processing methods, which we present for future recommendations

    The formation and fate of internal waves in the South China Sea

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 521 (2015): 65-69, doi:10.1038/nature14399.Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they impact a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for manmade structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, posing severe challenges for their observation and their inclusion in numerical climate models, which are sensitive to their effects6-7. Over a decade of studies8-11 have targeted the South China Sea, where the oceans’ most powerful internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their generation mechanism, variability and energy budget, however, due to the lack of in-situ data from the Luzon Strait, where extreme flow conditions make measurements challenging. Here we employ new observations and numerical models to (i) show that the waves begin as sinusoidal disturbances rather than from sharp hydraulic phenomena, (ii) reveal the existence of >200-m-high breaking internal waves in the generation region that give rise to turbulence levels >10,000 times that in the open ocean, (iii) determine that the Kuroshio western boundary current significantly refracts the internal wave field emanating from the Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled and observed energy fluxes that enables the first observationally-supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.Our work was supported by the U.S. Office of Naval Research and the Taiwan National Science Council.2015-10-2

    The Formation and Fate of Internal Waves In the South China Sea

    No full text
    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects6,7. For over a decade, studies8-11 have targeted the South China Sea, where the oceans\u27 most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of gt;200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels \u3e10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions

    Continental crust generated in oceanic arcs

    No full text
    Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intraoceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10Myr ago - coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone - a process probably more common in the Archaean - can produce juvenile continental crust
    corecore