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Abstract  

Conventional practices do not account for product life beyond end-of-sale – these practices are 

not sustainable. We have developed an end-of-life protocol that includes a metric that we call the 

Recovery Rating. The objectives of this Next Generation Protocol, beyond supporting the United 

Nations’ Sustainable Development Goals, are to encourage the production of goods designed for 

recovery and to promote the collaboration between consumers, the public, and the private sector 

to recover goods at their end-of-life. The Recovery Rating that we propose evaluates and 

quantifies recovery potential of products. The Recovery Rating, which is normed against 

embodied energy from the Cambridge Engineering Selector by Granta Design, accounts for 

different tiers of recovery: product, component, and material, and different recovery methods at 

each tier and material family. We will present the results of our Next Generation Protocol using 

three case studies: 1) disposal, single use PET bottle, 2) Nalgene® reusable bottle, and 3) 

vacuum insulated, reusable metal bottle. The findings indicate the Next Generation Protocol 

produces a viable Recovery Rating for the material tier. We will also present survey data on 

potential user reactions to symbolic, numerical, and graphical versions of the Recovery Rating. 

The Recovery Ratings for the product and component tiers require considerations that have yet to 

be accounted for, such as number of uses and production/processing methods, which we present 

for future recommendations. 
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1. Introduction 

The four basic phases of the life cycle include raw material allocation, manufacture, use, and 

disposal (Figure 1). At each of these phases, resources are invested into processes, such as 

mining ore, giving a product embodied energy. Thus, embodied energy is accumulated at each 

stage over a product’s life cycle. Waste is also produced as consequences of each of these 

processes, such as CO2 emissions. With most products going to a landfill at the end of their life, 

the embodied energy invested in each product is entirely lost. Following this cycle, more 

resources must be used, in turn generating more waste, each time a new product is made. This 

paradigm of product life cycles is inherently unsustainable by nature. The Global Footprint 

Network estimates that it takes the Earth one year and six months to replenish the resources that 

humanity uses in one year [1]. At this rate, humanity is using renewable resources at a faster rate 

than they can be replenished, making the current life cycle paradigm unsustainable as defined by 

Herman Daly.  

 
Figure 1: Inputs and outputs are required at each phase of a product’s life cycle, perpetually 

drawing resources from the Earth and generating pollution.  

 

Roland Geyer estimates that 6.3 billion metric tons of plastic waste has been generated between 

1950 and 2015 [2]. This number is predicted to grow to 12 billion metric tons by 2050. 

Disturbingly, this study also estimates that only 9% of plastic has been recycled, and only 12% 

of plastic has been incinerated to recover any fraction of embodied energy [2]. This leaves over 5 

billion metric tons of plastic as waste that cannot be metabolized to non-toxic and/or useful 

materials. 

 

There are possibilities to shift this paradigm towards a sustainable future. Recycling plays a large 

role in offsetting resource consumption. The fundamental benefit of recycling is preventing the 

need to extract raw materials from the Earth. However, while offsetting virgin material streams is 

an important step towards saving resources, intervening at other phases in a product lifecycle can 

lead to even greater impacts. Remanufacturing and reusing components, or whole products, can 

save energy and material waste by extending their individual life cycles [3]. The closer products, 
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components, or materials can be redirected towards re-use, the more embodied energy can be 

recovered. 

 

Some companies are already aware of the potential benefits and importance of utilizing 

“extending producer responsibility” (EPR) frameworks and have integrated them into their 

business models [3]. EPR frameworks, such as buy-back programs, can lead to the reuse, 

remanufacture, and recycling products back into their business, extending the life of the invested 

embodied energy. These programs can aid in the shift away from the paradigm of constantly 

drawing resources by recycling materials and reusing components. Companies like Patagonia 

and Apple offer programs that incentivize customers to “sell” their used, but functional, products 

back to these companies in exchange for credit. For the customers, they are monetarily 

incentivized to steer unused goods away from a landfill towards a second life cycle. For the 

corporations, they see expense savings as a driver towards sustainable change. 

 

Before suggesting solutions, the most influential players at hand must be identified. By mapping 

the product life cycle, there are two clear parties that have power over a product’s lifetime: 

Designers and users (Figure 2). Designers include all individuals along the production process 

from product development to manufacturers. Users refers to customers and general consumers 

that purchase, use and dispose of products. At the point of sale, the responsibility of a product 

immediately shifts from the designers to users. In the current paradigm, this suggests that 

designers do not play a role in the life cycle during use or disposal phases, thus they are not 

required to think of them [4]. Because of this lack of communication between parties, any 

attempt by designers to embed sustainable aspects of a product during use or disposal could fail 

[4]. This division and lack of communication has barred the life cycle from being truly cyclical. 

Designers and users should work together throughout the entire life cycle, ensuring every 

product is designed for user-friendliness and to maximize their end of life potential. It is 

imperative for these entities to collaborate because while this flow of a product’s life cycle has 

thrived for generations, it has also supported a trend of generating waste at an exponential rate.  

 

 
Figure 2: In the current paradigm of product life cycles, designers possess little to no 

responsibility for products after sale. 

 



6 

After identifying the immediate players, the nested systems were identified (Figure 3). 

Intuitively, the business system - business models, design cycles, manufacturing processes -  

have a direct impact on the development and production of products. Additionally, business 

practices can include the use phase of a product, impacting how individuals use these products. 

However, most businesses fail to be involved in the disposal part of the life cycle. Instead, 

disposal methods are nested within public policy. Policy dictates where waste can go, how it is 

regulated, and what services are available to treat waste. Additionally, policy affects how 

businesses can operate in their material acquisitions, manufacturing processes, and intended use. 

In restoring a circular lifecycle, policy can aid in redirecting goods away from landfill. For 

example, the European Union is currently adhering to the End of Life Vehicle directive, which 

mandates that 95 wt.% of all qualifying vehicles must be recovered at the end of their life [5]. 

Finally, the previously mentioned points of intervention are nested within the educational 

system. The education system includes all methods in which people learn, from formal education 

to societal and cultural interactions. After breaking down a life cycle and considering the whole 

system, the team found that education impacts how design is considered, informs the users on the 

best end of life practices for the products they use, and influences policy makers to develop 

legislation to strengthen a push towards sustainability. The team identified that the education 

loop has the strongest influence over all the other present systems because it has the largest 

potential to leverage long-term change. 

 

 
Figure 3: Several systems overlap over a product’s lifetime, influencing its development, use, 

and disposal. 

 

Donella Meadows ranks twelve areas where intervention in a system is possible in decreasing 

effectiveness [6]. As a solution to intervene in the product life cycle, a protocol and metric have 

been developed. These are aimed to immediately intervene at three points: changing the structure 

of information flows, introducing positive feedback loops, and interrupting the structure of 

material stocks, respectively. The protocol is aimed to educate designers to improve the 

sustainable design of their products. The metric is meant to be a tool to audit sustainable design, 

developing a feedback loop for designers to measure improvements. Additionally, the metric 

informs users about the products they purchase and use. Finally, as recovery rates of materials 

and components increases with the adoption of this protocol, the flows of virgin material for use 

should be interrupted with introduction of recycled materials. In the long term, continuous 
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improvement and adoption of a protocol could lead to intervention at more effective points. 

These long-term changes could include new legislation proposals, or changes in the overall 

system mindset 

 

The goal of our Next Generation Protocol is to reconnect users and designers over a product 

cycle. By auditing products for their recoverability, the protocol is aimed to empower users by 

providing information about the products they purchase and how to dispose of them. For 

designers, the protocol will serve as an auditing tool providing insight for how products can be 

changed for improved recoverability. For users, the protocol will inform users how dispose of 

their products at the end of their lives. With regards to disposing of products, responsibility for 

users should be emphasized on disposing of products correctly and efficiently. On the other 

hand, designers should be responsible for using materials and designs that are sustainable and 

can be recovered.  

 

1.1. Broader Impacts 

If a protocol is adopted to intervene over a product’s life cycle, several parties can be 

impacted by its effects. An informational feedback system could be developed for users 

about the products they use; informing them about the ecological footprint of the product 

itself and how to sustainably use their products and dispose of them at the end of their 

current use. Designers will be encouraged to design products more sustainably by 

designing them to be recovered. These design changes support the development of new 

economies around recovered and refurbished products. These new economies would have 

a fundamentally lower environmental impact relative to an economy of extracted raw 

materials. Waste management facilities will be affected by having to adapt to potentially 

new recovery and recycling processes. If policymakers see potential from widespread 

implementation, legislation can be drafted to promote new economies and business 

models.  

  

 1.1.1. Education 

In the current education model followed in the United States, engineers are taught 

following the deterministic approaches to engineering problems, meaning they are 

taught to solve the problem at hand. This often boils down to receiving problem 

handouts, following the methods taught by their professors, and crunching 

numbers until the ‘correct’ value is found. This method of solving for the correct 

variables in the desired manner has taught engineers that the final answer is more 

important than the process. Moreover, that it is more important than the impacts 

and implications the solution may have. The traditional four-year programs are 

churning out problem solvers, not the problem definers, the critical thinkers, and 

engineers with the ability to determine multi-disciplinary solutions that are 

needed. 
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The issue with the current educational model extends far beyond engineers. In a 

perfect world, a focus on sustainability and general care for this planet would be 

taught at every level in education. Including sustainability in curricula for all ages, 

instead of just focusing the specific branch of collegiate engineers, would foster a 

generation of sustainable decision makers. By introducing these subjects at every 

point in the typical K-12 (and beyond!) educations, the list of environmentally 

conscious workers would grow from engineers, scientists, and technologists, to 

including lawyers, politicians, economists, educators and experts in all other 

fields. It would, ideally, cultivate a new generation ready and able to meet and 

redefine the goals of sustainable development. The impacts such a generation 

could have would be massive. 

 

1.1.2 Business 

A buzzword and idea that has been popular in the business world is a circular 

economy. A circular economy is the idea of keeping goods, materials, and 

resources in use for as long as possible and recovering them at the end of each 

useful life. A circular economy would change businesses by opening underserved 

areas like waste management, to more investment, employment, and profit 

opportunities. This project and its end products will help the business world work 

towards a truly circular economy. Businesses would have a secure supply chain 

that they would be invested in for the full life-cycle of a product. As recovered 

materials could require less processing, businesses could long term save money. 

Also, by moving towards a truly circular economy, businesses can secure a supply 

chain that will last for decades. 

 

1.1.3 Design 

There are several potential implications for design with the implementation of the 

Next Generation Protocol. The protocol will serve as an educational tool for 

designers to inspect and audit their products prior to final production. By 

following the checklist, designers will gain insight for where their designs enable 

or prevent recovery at the end of a product’s use. Currently, there are countless 

examples of engineering designs in consumer products that do not allow for 

recovery at the end of their use. This newly formed information stream could lead 

to dramatic changes in engineering design that would allow for component or 

material recovery. Additionally, designers will begin to consider the life of a 

product after its first use. Considering the next generation of a product will be a 

reinforcing loop in the effort of changing the paradigm. However, as the protocol 

itself develops, it may put difficult limitations on designers in the future. For 

example, polymers occasionally require toxic additives, such as flame retardants, 

preventing the bulk material from being recyclable. This could lead to unknown 
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consequences; either designers feel unmotivated to make the remaining 

components recoverable, or they become driven to develop a new design that does 

not require toxic materials. 

 

1.1.4. Policy   

Sustainable development faces a compilation of challenges that multiply with 

each generation. If the protocol is reinforced and complemented by public policy, 

then impacts could be made across systems. Public policy can aid the protocol by 

banning the use of toxic chemicals and materials that inhibit product, component, 

and material recovery and disassembly. Similarly, law can require newly 

manufactured products to have a specific amount of the product by mass made 

from recovered sources. By adopting such policies, people involved in the 

production of products and users will be given an impetus for sustainable 

development and responsible end-of-generation treatment. Likewise, public 

policy could set the legal foundation for a closed-looped supply chain. 

 

2. Literature Review 

 2.1. Education 

The global public has, in recent decades, become more aware of the lack of sustainable 

consciousness in society. Scholarly interest has sparked around the importance of 

sustainability in higher education, workforce development, agencies, and government [7], 

[8], [9], [10]. There are no current specific guidelines for the inclusion of sustainability 

into education and engineering education, so it varies from institute from institute, 

leading to an imbalance in education. Some faculty believe that the deterministic 

approaches to education of the past are sufficient, without including sustainability [11]. 

Others believe engineering programs require the inclusion of sustainable development 

into their curriculum, as engineers design, build, plan and construct the world of 

tomorrow. Engineers are pragmatic and logical, but ethics and morality cannot be lost in 

their education [12]. Numerous scholars in this emerging field agree, engineering 

education needs to change to account for ethical and sustainable practices. These scholars 

from leading liberal arts and research institutions argue that various frameworks for 

sustainability need to be incorporated into education to produce engineers capable of 

solving the problems this world currently faces [13].  

  

A group of researchers from Stanford University and Pennsylvania State University 

created a framework for including sustainability in education. These researches defined 

five meta-competencies to be implemented in engineering programs—systems thinking, 

temporal thinking, interpersonal literacy, ethical literacy and creativity/imagination 

[17].The authors did not include what they call ‘foundational competencies’ in the meta-

competencies, as they are already embedded in typical engineering educations [17]. The 
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inclusion of meta-competencies in education develops a common ground for discourse, 

discussion and responsible decision making for sustainable development within 

organizations. 

  

Another criterion set to guide engineering activity was published through the University 

of Cambridge which outlined eight topics which must be addressed to receive a well-

rounded, sustainably focused engineering education.1 This research found that an 

expanded framework, including sustainability as a core subject, leads students towards 

finding solutions for real world problems [14]. 

  

A study done by the Department of Petroleum and Chemical Engineering, Sultan Qaboos 

University, found that sustainable development in education would lead to solutions for 

tangible issues such as minimizing resource depletion and environmental impact [12]. 

The studies found that stand-alone courses that educate on the historical and societal 

evolutions of sustainable development must be included for young engineers to fully 

understand the concept. Sustainability must be embedded in upper-division engineering 

courses, so as it is continuously developed throughout the education. 

  

There is a continually growing understanding that sustainability must be included in 

modern engineering curriculum to best prepare engineers to be effective in their careers. 

Both the Association for the Advancement of Sustainability in Higher Education 

(AASHE) and the Accreditation Board of Engineering Training (ABET) are beginning to 

include sustainability in their curriculum requirements, pushing more programs towards 

sustainable development. The inclusion of sustainability frameworks in curriculum is a 

high leverage point to catalyze change in education. Continuing research into these areas 

of study is vital for the development of sustainably driven problem definers and solvers 

[12]. Incorporating sustainability directly into an engineering curriculum would further 

educate future designers, manufacturers and user on how their designs and products 

interact with and affect this planet. 

 

 2.2. Business 

Business and trade has been vital to the development of our society and will remain 

important for humans. Sustainable development is needed to secure a future for coming 

generations and for ecosystems that have been damaged by human interaction. Therefore, 

business will play an integral role in the building of a sustainable society. 

For global business to move towards a sustainable future, there will have to be many 

                                                 
1 These included ethical foundation, justice through participation, efficient coordinated 

infrastructures, maintenance of natural capital, holistic financial accountability, systems context, 

interlinking scales, and future vision. 
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changes. One necessary shift is that business and sustainability are commonly seen as 

opponents but must be viewed as working together if for a truly sustainable economic 

future [15]. Some describe this as the “business case” for sustainability, which is the idea 

that environmental and social conscious operational changes lead to greater financial 

success [16]. Unfortunately for a truly scientific “business case” for sustainability there 

must be more research carried out that works at a broad scale over many different 

industry sectors [16]. 

 

Another change to be addressed is the managerial styles of business operations. 

Sustainability is a large, daunting, and complex problem that classic top-down hegemonic 

managerial styles may not be able to handle [17].  Some large companies, like Toyota 

Motor Company and Nike, have explored other managerial styles that are more equipped 

to handle today’s complex business operations and could be used to address sustainability 

in business as well. Toyota has changed to allow more localized decision-making instead 

of requiring areas to go through the corporate headquarters [17]. This localized focus can 

be important to dealing with sustainable development in local areas that regional areas of 

business would have better understanding of than a headquarters in another country.  

 

Localized decision making can also aide in better products for customers. How 

consumers use and dispose of products has a big impact on the environment [18].  

Designers can influence how consumers use products and can therefore influence goods 

to be used in an optimally sustainable manner [18]. No literature was found on how 

designers influence how a product is disposed of, exposing a gap between designers and 

users where information needs to be relayed for a sustainable future. The protocol 

proposed in this paper has the ability to bridge this informational gap and allow 

consumers to better understand how to sustainably dispose of products. 

 

A more sustainable future requires better management of waste from operations and from 

consumers [19]. There are opportunities in waste streams for new product development 

and therefore business. In developing countries, a growing hazardous waste stream is 

vehicle tires. This waste stream can be diverted by businesses that take used tires and 

retread them, extending their useful life. Tire’s useful life can be extended further as 

some business take tires and transform them into rubber that can be used in playgrounds 

or turf fields [19]. This protocol can aid in the formation of well tracked waste material 

streams, opening business opportunities for “raw” materials sourcing for other operations.  
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2.3. Design  

User-centered design (UCD) is a powerful design methodology that can be used as a 

model for how the Next-Generation Protocol can change the paradigm of waste in the 

current product lifecycle. UCD is a unique methodology that places emphasis on 

integrating users early in the design process [20]. According to a survey of 103 designers 

with an average of 8 years of experience using UCD, its nature leads to designers 

developing a strong sense of ownership of the product by the time it is completed [21]. 

This is important to changing the current division between users and designers because 

designers often feel more connected to the products and users when implementing UCD. 

The design process utilizes five collaborative and iterative steps until a product satisfies 

all user needs: observation, idea generation, prototyping, testing, and evolution [20]. 

These repeated steps often lead to products with higher satisfaction and less evolutions 

after product release [21]. These statistics are helpful because they show more effective 

products are developed by uniting users and designers in the design phase. In turn, this 

could potentially lead to more sustainable product life cycles by uniting these two parties. 

  

Despite a lack of frameworks within UCD for sustainable material selection, there has 

been research for encouraging sustainable product use built from UCD principles. 

Behavior adaptation frameworks including eco-feedback, scripting, and forced 

functionality, show potential in influencing user-product interactions [22]. By 

understanding the impact of designers embedding sustainable intentions within their 

products, insights may be found that can apply to the protocol.  

  

Eco-feedback is a technique used by designers where a feedback loop is embedded into 

the product to inform users. This is a powerful tool because effective indicators allow 

users to make informed decisions with their product. In 2006, Koens and Groeneveld 

completed a study in the Netherlands where residents were given meters that relay 

household energy usage in real-time [23], [24]. At the end of the study, those using the 

meter saw a decrease in energy usage by 7% on average, a significant impact if applied to 

a larger population [23], [24]. However, when implementing eco-feedback, it is important 

to choose a few, effective indicators so that the users are informed but not overwhelmed. 

This is important for the protocol with regards to relaying metric scores to users. With the 

correct information provided in an understandable way, users show improvements in 

sustainable product use.   

 

Scripting and forced functionality are other techniques where designers embed their 

intentions within products. Verbeek and Kockelkoren define scripting as a “product 

layout guiding the behavior of the user…to comply with values and intentions inscribed 

into the product by its designer,” [25]. Through scripting, designers can set sustainable 

features within a product, such as a low-power setting, as the default [22]. However, 



13 

users could still use a product with no intention of maintaining sustainable usage. Forced 

functionality is the strongest level of intervention for designers by preventing user 

intervention with certain product features. By removing users, the potential for 

irresponsible utilization can be avoided, such as intelligent systems like Honda’s 

integrated motor assist [22]. However, implementing forced functionality removes 

accountability from the users’ perspective, thus not generating a positive feedback loop 

that encourages sustainable behavior. With regards to the protocol, forced functionality 

could come as legislative requirements that are levied on designers, but not users, such as 

the ELV directive [5]. When implementing this protocol, it is important to realize the 

consequences of scripting and forced functionality because the goal is to develop new 

feedback loops for users to encourage sustainable use. 

 

2.4. Policy 

EOL policies often honor Thomas Lindhqvist’s principles of Extended Producer 

Responsibility [26]: 

 

Extended Producer Responsibility (EPR) is a policy principle to promote total life cycle environmental 

improvements of product systems by extending the responsibilities of the manufacturer of the product to 

various parts of the entire life cycle of the product, and especially to the take-back, recycling and final 

disposal of the product. Extended Producer Responsibility (EPR) is implemented through administrative, 

economic and informative policy instruments. 

The EU’s End-of-Life Vehicles (ELV), Release of Hazardous Substances (RoHS), and 

Waste of Electrical and Electronic Equipment (WEEE) are prime examples. The 

objective of ELV is to maximize recovery of vehicles at the end of consumer use, reduce 

waste, and improve environmental performance. The ELV policy has for general 

demands for manufactures: (1) reduce hazardous materials when designing vehicles, (2) 

vehicles must be designed and produced to facilitate the 3R’s – reuse, recovery, and 

recycle, (3) increase amount of materials obtained from the 3R’s, and (4) components of 

vehicles that enter the market after 2003 cannot contain mercury, hexavalent chromium, 

cadmium, and/or lead [26]. 

  

Since the inception of ELV in the EU, Japan, Korea, and China have adopted similar 

ELV policies (Table I) [27]. ELV policies generally makes 95% recovery the target 

through automobile shredding residue (ASR) recovery, and reusing, recovering, and 

recycling components and metals. Sakai, et. al. agree that product design in the early 

manufacturing stages has the most influence on this EOL strategy [27]. China is the 

largest single country with legislative ELV policies [28]. All in all, the policies forces 

firms and manufactures to consider environmental constraints in product development as 

well techniques that facilitate recovery. 
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Table I: Legislative ELV Policies in Countries  

Country Policy Date Adopted  

EU 
Directive 2000/53/EC of the European Parliament and the 

European Council on ELVs 
September 2000 

Japan Law for the Recycling of End-of-Life Vehicles July 2002 

Korea Circulation of Resource from ELV and WEEE August 2007 

China Technology Policy for Automotive Products Recycling February 2006 

 

2.5. Embodied Energy 

Embodied energy is energy that has been sequestered in “materials during all processes 

of production”, manufacturing, and disposal and waste treatment [29]. Operating energy 

is energy “expended in maintaining”, powering, and operating devices. Although Dixit, 

et. al. focus on building construction, their discussion on embodied energy can be applied 

across the board. Dixit, et. al. argue that for researchers, professionals, and manufactures 

to maximize efficiency, embodied energy inventories and methodologies need to be 

complete and accurate. Doing so may decrease the fact buildings contain 20 to 50 times 

the embodied energy than the annual operating energy of those buildings. They argue the 

most promising solution is a protocol that standardizes data collection of embodied 

energy. Amanda D. Cuellar and Michael E. Weber agree the amount of embodied energy 

needs to be decreased. In their investigation on wasted energy in food, Cuellar and Weber 

found the embedded energy in the food industry accounts for 2% of the annual energy 

consumed in the US alone. The authors argue that to decrease embodied energy and 

wasted energy industry must be redesigned so that less energy is introduced. Moreover, 

since the data is incomplete, they propose new methods and policies be formed to 

account for energy [30]. 

 

3. Next Generation Protocol 

Designers must be conscious of the recoverability of their products throughout the design 

process. To aid designers and all others involved in the production of goods a protocol was 

produced, in the form of a flowchart, to encourage more thoughtful design (Figure 4). To 

produce goods that are more recoverable and more sustainable designers should aim for the most 

embodied energy to be diverted from landfills. To maximize returned embodied energy, products 

should aim to land higher on the flowsheet. This flowsheet can be used in prototyping as a test to 

run products, components, and materials through to find weaknesses in the good. Designers must 

consider three principles throughout their process: design for disassembly, reduce toxicity, and 

be conscious of material selection. 
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Figure 4: Next Generation Protocol Flowsheet 
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4. Methods  

4.1. Methodology 

Quantitative and qualitative methods are used in this project. Quantitative methods in the 

form of a top to bottom rating system are used to generate Recovery Ratings. A 

combination of secondary sources, such as peer-reviewed articles and Granta Design’s 

CES EcoAudit tool, were used to generate scores, as well as distinguish recovery 

methods. 

Qualitative methods in the form of three case studies are used to validate the metric. The 

case studies are on three water bottles: 1) metal, reusable bottle, 2) plastic, reusable 

bottle, and 3) single-use, plastic bottle. Moreover, an unscientific survey was conducted 

to gage responses to different delivery methods of scores; the delivery methods tested 

were numerical, graphical, and symbolic. 

4.2. Methods 

The metric is intended to communicate the recovery potential of embodied energy of 

products. To simplify and quantify easily the recovery potential of products, the metric is 

on a weight percent recovery basis. The metric is broken into different tiers in order of 

decreasing maximum return of embodied energy: 1) product-level, 2) component-level, 

and 3) material-level. Each tier has variations in recovery methods, and the material tier 

has a distinct recovery scheme for each material family (Table II). Due to the variation 

and inconsistency in recovery methods for natural materials, they do not have a definite 

breakdown of recovery methods recovery potential scores. Some natural materials, like 

wood and bamboo, are used in consumer products therefore better data will be required 

for a future metric that includes natural materials. 

 

Due to the tremendous amount of materials in each material family, ten common 

materials were selected for each group to generate scores for each recovery method. 

Second, due to the property variations in material families, the 1) metals were divided 

into ferrous and non-ferrous metals, and 2) polymers were organized into thermoplastics, 

thermosets, as well as thermoplastic and thermoset elastomers. As for ceramics and 

glasses, they were combined into a single category. The materials used for each group, as 

well as their recoverability factors can be found in Appendix 5. 
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Table II: Recovery Tiers & Recovery Methods   

Recovery Tiers Product Component Material 

Recovery Methods 

Reuse Reuse Reuse 

Recondition Refurbish Remanufacture 

Refurbish Remanufacture Recycle 

Recycle Recycle Downcycle 

Incineration Incineration Compost 

Landfill Landfill Incineration 

 Landfill 

 

5. Results  

5.1. Metric Development  

The Next Generation protocol breaks items up into three distinct tiers--product, 

component, and material. Scores at each tier are based on the amount of recoverable 

embodied energy and minimization of additional inputs and outputs. For example, if a 

product is totally reusable, reusing it minimizes any additional energy needed for its next 

generation of use and thereby gives it the maximum rating. At the product and 

component tiers, scores are graphically represented. At the product tier, the products are 

rated from 4 stars to 1 star. At the component tier, the components are rated with a 

system inspired by health care. In health care, a series of emoticon faces (from happy to 

sad), are used to rank a patient’s pain. For the component tier, the emoticon faces 

represent the end of life recovery method hierarchy for components (Figure 5).  

 

 
Figure 5. The rating systems for the product and component tiers.  
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At the material tier, the CES EcoAudit tool was used to find recovery scenarios and 

generate recovery potential scores on a 1 kg basis. Unique recoverability factors (𝛽i) were 

calculated by averaging the values of recoverable energy in each end of life scenario for 

the following material families: non-ferrous and ferrous metals, thermoplastics, 

thermosets, elastomers, and glasses and ceramics (Figure 6). To facilitate the easy use of 

the metric, an End of Generation flow sheet was written (Appendix I).  

 

 
Figure 6. Recoverability factor (𝛽i) examples for two material families.  

 

An equation was derived to calculate EOL values (Equation 1). To use the metric, a 

product is broken down into its most basic material levels. The material families are 

weighed, producing a weight fraction of the total products’ weight. The fractions are 

multiplied by the appropriate end of life method recoverability factor and summed within 

each material family. The scores of all material families are summed, yielding an end of 

life value out of 100. 

 

 

 
Equation 1. Calculating EOL Values with the metric 

 

 5.2 Case Study  

The case study observed three different types of water bottles, a reusable metal bottle, a 

reusable plastic bottle, and a single use polyethylene terephthalate bottle (PET) (A.2.). 

The metal insulated bottle was modeled after the Hydro Flask brand bottles. Hydro 

Flask’s are made from two main components, the body and the lid. The body is assumed 

to be composed of one material, a ferrous metal. The lid has two material pieces, a 

silicone seal near the threads and a thermoset top. The reusable plastic bottle is modeled 
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after Nalgene brand plastic bottles. These bottles are composed of two components, the 

body and the lid which, are composed of Tritan thermoplastic and another thermoplastic 

respectively. The single use bottle has a PET body and a polyethylene (PE) lid. The 

considerations for these inputs for the product, component, and material tiers of the water 

bottle products tested the viability of the metric and protocol. 

 

At the product level the metal bottle receives the highest score, 4 stars (Table III). Both 

components of the Hydro Flask are reusable on their own resulting in the highest score at 

this tier, a smiley face. The body of the metal bottle is assumed to be comprised of 95% 

of the product weight and is made of one material and is inherently reusable as a cup, 

even without a lid, therefore at the material level the ferrous metal body is reusable. 

Breaking the lid of the Hydro Flask into individual materials produces a thermoset top 

and a thermoset elastomer silicone seal. The material properties of this family limit the 

end-of-life possibilities and results in these materials, 5 wt.% of the product, being 

disposed of in the landfill. Overall the metal bottle received a material score of 95/100.  

 

Table III: Case Study Results   

 
 

The reusable plastic bottle receives 4 stars at the product level because of its design for 

reuse. The Nalgene components are mostly reusable so at this level it also receives the 

highest score, a smiley face. The Tritan plastic body makes up 85 wt.% of the product, is 

made of one material and is inherently reusable as a cup. The thermoplastic lid, being 15 

wt.% of the product, has components that could break easily and would be less reusable 

without a Nalgene bottle body therefore it is assumed that the lid would be recycled at its 

end-of-life. Overall the Nalgene bottle receives a material EOL value of 94.9/100. 

 

Lastly, the single use plastic bottle was assumed to be landfilled at the end-of-life, 

resulting in a product score of 1 star. Similarly, the components would be landfilled at the 
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end-of-life resulting in the lowest score at that tier, a frowning face. The body and lid of 

single use plastic bottles are made of recyclable thermoplastics PET and PE respectively. 

Inputting this data into the metric calculator resulted in an EOL value of 76/100 for the 

single use bottle.  

 

5.3. Survey  

To better understand how scores of the ratings might be perceived by the general public, 

a recoverability survey was made public to Cal Poly students through the Cal Poly Class 

of 2018 Facebook page. The survey consisted of 5 questions (Appendix A.3.). One of the 

5 questions showed the participant three representations of the scores: symbolic, 

numerical and graphical (Figures 7, 8, and 9). 

 

 
Figure 7: Symbolic representation of the recoverability rating 

 
Figure 8: Numerical representation of the recoverability rating 

 
Figure 9: Graphical representation of the recoverability rating 

 

The results showed that most participants preferred the numerical representation of the 

score, second to the graphical representation. Due to the small sample size of 48 students, 
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further analysis is required to find the optimal method to communicate scores to 

designers and users.  

 

6. Discussion 

The case study showed that the protocol and metric have viability as both reusable bottles scored 

higher across all tiers than the single use bottle. These scores can be relayed to those involved in 

the production of goods, allowing for improved designs to result in higher scores. Consumers can 

best understand these scores if they are relayed numerically, according to the survey conducted. 

The resulting scores from the protocol and metric should be shown on product labels to relay 

information about the sustainability of products between designers and consumers  

 

The case study also showcased shortcomings of the protocol and metric. There are limitations on 

the product and component levels in their current state, as the scores are graphical instead of 

numerical. The product and material tiers also do not consider recycling as a possible end-of-life 

scenario. Recycling was initially not included in these tiers because of its inclusion in the 

material tier. Those two levels also don’t share the same complexity as the material tier, which 

considers seven end of life recovery methods instead of four and five, respectively.  

 

For all three tiers there is currently no way to track compostability. Because the quantitative data 

collection relied primarily on CES EcoAudit base, which did not include composting as a 

recovery method, it was not considered in the scoring for the material tier.  

 

As the survey had only 48 responses, it represented only a small sample within Cal Poly 

students. This did not allow statistically significant conclusions to be drawn. Most participants 

preferred the numerical representation of the recoverability rating, which is not to say that the 

entire Cal Poly population would prefer the numerical rating.  

 

The protocol and metric both have the ability to change how purchasers and users view the 

products they are using daily. Should the rating systems be adopted and used on daily-use items, 

purchasers will be able to see the ratings and make more informed decisions on what they are 

purchasing. The protocol would then be akin to the Energy Star rating system, which helps 

purchasers buy appliances which are more eco-friendly and cost-efficient.  
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7. Conclusions  

7.1. Conclusions 

● CES Eco-Audit tools allows for accurate calibration of metric scales at material-

tier. 

● The product- and component-tiers should be re-evaluated to improve effective 

rating scales. 

● Currently, Cal Poly students prefer numerical rating systems for relaying 

recoverability scores.  

● The case studies showed that the metric can potentially be a viable tool to assess 

the recoverability of products. 

 

7.2. Future Work  

For the next iteration of the metric and protocol, more data collection on recovery 

methods for other material families is required. As an example, the CES EcoAudit tool 

did not have accurate data for natural materials, so they were not included as a material 

family in this protocol. Similarly, investigating calculation methods to include 

composting processes as recovery methods is crucial for the next iteration.  

 

Considering the discrepancy between recovery potential and known recovery rates would 

be valuable as future work. In the case study, the plastic bottle was assumed to be 

recycled. In reality, most plastic water bottles are landfilled at the end of their useful 

lives. The case study showed that a sample of Cal Poly students preferred the numerical 

representation of the score, but further analysis should be done to find the most effect 

methods of communicating scores to users and producers. Finally, developing a user 

interface to allow producers to use the metric to audit their own products would allow for 

eco-feedback during prototyping.  
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9. Appendices         

 

A.1. Glossary 

Sustainability: the simultaneous pursuit of human health and happiness, environmental quality, 

and economic well-being for current and future generations  

Alter, T., Barsom, S., Engle, E., Sterner, G., & Vandenbergh, L. (2016) “Developing a 

Framework for Sustainability Meta-Competencies”, Pennsylvania State University.  

 

Sustainability meta-competencies: overarching competencies, within which are sub-

competencies that provide specific applications for the overarching competencies  

● Sustainability meta-competencies: 

○ Systems Thinking: the ability to analyze complex systems across multiple 

domains and at different scales 

○ Temporal Thinking: the ability to draw upon and anticipate states and narratives 

of past and future societies and environments 

○ Interpersonal literacy: the ability to comprehend, motivate, enable, relate to and 

communicate across diverse individuals, political systems and organizations 

○ Ethical literacy: the ability to identify and assess ethical issues and controversies 

(related to sustainability) and to discuss, respond to, and reconcile them, applying 

personal and societal values and goals 

○ Creativity/ imagination: ability to envision, develop and apply innovative and 

strategic solutions and frameworks to adapt to changing and challenging 

situations 

○ Foundational competencies: expected capabilities based on education and 

adaptation. Include: logical thinking, critical thinking, quantitative analysis and 

numerical reasoning, reading and writing  

Alter, T., Barsom, S., Engle, E., Sterner, G., & Vandenbergh, L. (2016) “Developing a 

Framework for Sustainability Meta-Competencies”, Pennsylvania State University.  

 

Corporate sustainability management: “a strategic and profit-driven corporate response to 

environmental and social issues caused through the organization’s primary and secondary 

activities” 

Salzmann, Ionescu-Somers, & Steger. (2005). The Business Case for Corporate 

Sustainability: Literature Review and Research Options. European Management Journal, 

23(1), 27-36. 

 

Economic development: seeks ‘‘to improve the economic well-being and quality of life for a 

community by creating and/or retaining jobs that facilitate growth and provide a stable tax base’’ 

Grodach, C. (2011). Barriers to sustainable economic development: The Dallas–Fort 

Worth experience. Cities, 28(4), 300-309. 
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Sustainable economic development: consists of three elements or overarching goals: an 

improved standard of living over time for all, the reduction of social and spatial inequality, and 

sustainable resource use and production. Moreover, sustainable economic development may be 

distinguished from the conventional approach in that it considers economic, environmental, and 

equity impacts together rather than prioritizing economic growth.  

Salzmann, Ionescu-Somers, & Steger. (2005). The Business Case for Corporate 

Sustainability: Literature Review and Research Options. European Management 

Journal, 23(1), 27-36. 

 

User Centered Design: Process outlining the phases throughout a design and development life-

cycle all while focusing on gaining a deep understanding of who will be using the product. 

 Usability.gov 

 

Scripting: Influencing user-product interactions to match those of the designer by embedding 

features. 

 

Eco-Feedback: A technique for designers to provide feedback to users regarding energy usage 

for a given product to encourage sustainable behaviors. 

 

Forced Functionality: A technique by designers to bypass user-product interacts to ensure the 

functionality of a feature is unhindered. 

 

Design for Environment:  The systematic consideration of design performance with respect to 

environmental, health, and safety objectives over the full product and process life cycle.  

Fiksel, Joseph, Design for Environment: Creating Eco-efficient Products and Processes, 

McGraw-Hill, New York, 1996.  

 

Sustainable Development: “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” 

UN. Chapter 2, “Towards Sustainable Development,” in “Our Common Future: Report 

of the World Commission on Environment and Development,” (report: UN Documents, 

1987) 

 

Embodied Energy: energy spent during “all processes of production”, manufacturing, transport, 

and disposal and waste treatment 

Manish Kumar Dixit, José L. Fernández-Solís, Sarel Lavy, Charles H. Culp, 

“Identification of parameters for embodied energy measurement: A literature review,” 

Energy and Buildings Vol. 42 (2010): 1238-1247. 
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Operating Energy: energy “expended in maintaining”, powering, and operating devices 

Manish Kumar Dixit, José L. Fernández-Solís, Sarel Lavy, Charles H. Culp, 

“Identification of parameters for embodied energy measurement: A literature review,” 

Energy and Buildings Vol. 42 (2010): 1238-1247. 

 

Extended Producer Responsibility (EPR): “a policy principle to promote total life cycle 

environmental improvements of product systems by extending the responsibilities of the 

manufacturer of the product to various parts of the entire life cycle of the product, and especially 

to the take-back, recycling and final disposal of the product” 

A. Gehin, P. Zwolinski, and D. Brissaud, “A tool to implement sustainable end-of-life 

strategies in the product development phase,” J. of Cleaner Production Vol. 16 (2008): 

566-576. 

Product Recovery: “to retrieve a product’s value when the product no longer fulfills the user’s 
desired needs” 

M. Lindahl, et. al., “Concepts and definitions for product recovery – Analysis and 
clarification of the terminology used in academia and industry,” Innovation in Life Cycle 
Engineering and Sustainable Development (2006): 123-138. 

Remanufacturing: “an industrial process in which worn-out products are restored to like-new 
condition”, as well product components and parts 

M. Lindahl, et. al., “Concepts and definitions for product recovery – Analysis and 
clarification of the terminology used in academia and industry,” Innovation in Life Cycle 
Engineering and Sustainable Development (2006): 123-138. 

 
Reuse: “the process of disassembling products to recover usable parts and assemblies for the 
purpose of utilizing them in newly manufactured products” 

M. Lindahl, et. al., “Concepts and definitions for product recovery – Analysis and 
clarification of the terminology used in academia and industry,” Innovation in Life Cycle 
Engineering and Sustainable Development (2006): 123-138. 

 
Reconditioning: “the process of restoring components to a functional and/or satisfactory state 
but not above original specification using such methods as resurfacing, repainting, sleeving, etc.” 

M. Lindahl, et. al., “Concepts and definitions for product recovery – Analysis and 
clarification of the terminology used in academia and industry,” Innovation in Life Cycle 
Engineering and Sustainable Development (2006): 123-138. 

 
Refurbishment: “the process in which a product or component is cleaned and repaired in order 
to make a resell” 

M. Lindahl, et. al., “Concepts and definitions for product recovery – Analysis and 
clarification of the terminology used in academia and industry,” Innovation in Life Cycle 
Engineering and Sustainable Development (2006): 123-138. 
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Component Cannibalization: “the process in which a limited number of components are 
extracted from a product for recovery” 

M. Lindahl, et. al., “Concepts and definitions for product recovery – Analysis and 
clarification of the terminology used in academia and industry,” Innovation in Life Cycle 
Engineering and Sustainable Development (2006): 123-138. 

 
Material Recycling: “the process by which materials otherwise destined for disposal are 
collected, processed, and re-manufactured into new products. Composting is a form of recycling” 

M. Lindahl, et. al., “Concepts and definitions for product recovery – Analysis and 
clarification of the terminology used in academia and industry,” Innovation in Life Cycle 
Engineering and Sustainable Development (2006): 123-138. 
 

A.2. Case Study: Protocol and Metric in use  

An example of how the metal reusable bottle from the case study would be run through 

the metric and protocol: 

● As a product, Hydro Flasks are designed to be reused. Therefore, this product 

retains the highest possible recoverability in the flowchart and as a score, a 4-star 

rating (Table IV). 

● At the component tier, both the lid and the ferrous metal body are reusable. 

Therefore, the components return the highest amount of embodied energy to the 

system resulting in the highest possible score at this tier, a smiley face (Table IV). 

● The materials that make up the product are broken up as follows (Table IV): 

○ Ferrous metal body, reused: 95wt%, fi=.95, Bi=100 

■ Using Eq 1. .95*100= 95 EOL value 

○ Silicone seal from lid, landfill: 1 wt.%,  fi=.01, Bi=0 

■ Using Eq 1. .01*0= 0 EOL value 

○ Thermoset top from lid, landfill: 4 wt.%,  fi=.04, Bi=0 

■ Using Eq 1. .04*0= 0 EOL value 

○ Total material EOL value= 95 + 0 + 0 = 95/100 

 

Table IV. Results from Case Study for Reusable Metal Bottle 
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A.3. Recoverability Survey 

1. What is your field of study? 

a. Engineering 

b. Business 

c. Agriculture, Food, and Environmental Sciences 

d. Architecture and Environmental Design 

e. Liberal Arts 

f. Science and Mathematics 

g. Other 

 

2. Can you differentiate between recovery, recycling, composting, and reusing? 

a. Yes 

b. No 

 

3. What factor influences your decision most when purchasing a product? 

a. Price 

b. Product Reviews 

c. Brand  

d. Environmental Friendliness (Sustainability) 

e. Other 

 

4. How important is sustainability of a product when you are purchasing it? 

a. Ranking from 1 (not considered) to 5 (top priority) 

 

5. Which scoring system is most helpful for you? 

a. Option 1 
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b. Option 2 

 
 

c. Option 3 

 
 

d. None of the above are helpful  
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A.4.  Recoverability Factors for the included Material Families 

 

Table V: Recovery Methods and Recoverability Factors (%) for Metals 

 Ferrous Metals Non-Ferrous Metals 

Reuse 100.00 100.00 

Remanufacture 92.20 97.01 

Recycle 75.83 82.11 

Downcycle 37.83 40.95 

Landfill 0.00 0.00 

 

Table VI: Recovery Methods and Recoverability Factors (%) for Polymers 

 Thermoplastics Thermosets 
Thermoplastic 

Elastomers 

Thermoset 

Elastomers 

Reuse 100.00 100.00 100.00 100.00 

Remanufacture 96.65 96.95 97.06 95.48 

Recycle 66.04 0.00 33.05 0.00 

Downcycle 13.25 5.64 11.65 0.14 

Incinerate 7.90 0.12 2.59 0.00 

Landfill 0.00 0.00 0.00 0.00 

 

 

Table VII: Recovery Methods and Recoverability Factors (%) for Ceramics and Glasses 

Reuse 100.00 

Remanufacture 78.78 

Recycle 6.04 

Downcycle 0.71 

Landfill 0.00 



32 

A.5. Materials Used to Calculate Scores for Each Material Family 

 

·    Ferrous 

1.  Maraging steel – 250 

2.  Alloy steels -- cast -- SAE 4130 

3.  Low carbon steel -- cast – annealed 

4.  Cast irons -- alloy -- austenitic -- flake graphite -- EN GJLA XNiCuCr15  

62  

5.  Coated steels – galvanized 

6.  Wrought Iron 

7.  Make hardening YS260, cold rolled 

8.  stainless steel 

9.  Precipitation hardened stainless steel 

10.   Tool steels, AISI A10 

·    Non-Ferrous 

1.  Aluminum 

2.  Chromium -- Nickel Alloy 

3.  Cobalt -- Commercial Purity -- annealed, soft 

4.  Copper – Brass 

5.  Lead -- Tin alloy -- ASTM Sn20B (20-80-solder) 

6.  Magnesium -- commercial purity -- ASTM 9980A 

7.  Nickel Titanium Alloy -- wire, annealed, austenitic 

8.  Tin -- Commercial Purity, Grade A 

9.  Titanium -- Unalloyed -- Grade 1 

10.   Zinc -- Aluminum Alloy -- Kirksite I 

·    Thermoplastic 

1.  Polystyrene general-purpose crystal           

2.  PLA General Purpose           

3.  PP Random Copolymer low flow   

4.  PMMA Molding and Extrusion                   

5.  PMMA Molding and Extrusion                   

6.  Cellulose Acetate - Molded          

7.  1 kg PET unfilled semi-crystalline                 

8.  Polyamide/Nylon -- PA1010 -- unfilled                  

9.  EVOH - unfilled                

10.   ABS -- Aluminum Filled -- 40% aluminum flake                                    

·    Thermoset 

1.  PF cellulose filled, impact modified, molding    

2.  PF cellulose filled, impact modified, molding             

3.  DAP molding, glass filled          
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4.  Polyimide 40% glass filled                      

5.  Polyimide unfilled             

6.  Epoxy            

7.  Vinyl Ester - standard           

8.  Polyester Cast, Rigid            

9.  Phenol Formaldehyde Unfilled Casting Resin                      

10.   Polyurethane                          

·    Thermoplastic Elastomer 

1.  TPV Shore A40                 

2.  TPU              

3.  TPS Shore A50                  

4.  TPO              

5.  TPC Shore d40                  

6.  TPA Shore D25                 

7.  PVC Flexible standard grade                      

8.  PVC -- Shore A35             

9.  POE -- Ethylene-based, Shore A65                

10.   MPR -- Shore A60             

·    Thermoset Elastomer 

1.  Polysulphide rubber           

2.  Styrene butadiene rubber                      

3.  Polyurethane Rubber            

4.  Polyisoprene rubber           

5.  Natural rubber           

6.  Nitrile rubbers           

7.  Ethyl Vinyl acetate rubber                      

8.  Chlorinated polyethylene                      

9.  Butadiene Rubber              

10.   ACM Acrylic Rubber           

·    Ceramics and Glasses 

1.  Zirconia                     

2.  Tungsten Carbide              

3.  Silicon Carbide                  

4.  Alumina (85) (410)             

5.  Ceramic Tile             

6.  Cement (high alumina)                      

7.  Silica (96%)              

8.  1 kg soda lime glass 070                      

9.  Borosilicate       


