14 research outputs found

    Classification of Covid-19 Diseases Through Lung CT-Scan Image Using the ResNet-50 Architecture

    Get PDF
    Covid-19 is a respiratory tract disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The Covid-19 disease was first reported in Wuhan, China, in December 2019. The SARS-CoV-2 virus is primarily transmitted through human contact, and the World Health Organization has proclaimed a global pandemic (WHO). Symptoms of Covid-19 can range from asymptomatic to mild and severe. One way to diagnose Covid-19 disease can be done by examining lung abnormalities on the results of a Computed Tomography Scan (CT-Scan) of the lungs. However, determining the diagnostic results requires high accuracy and a long time. For this reason, an automated system is needed to make it easier for medical personnel to diagnose Covid-19 disease quickly and accurately. One of the automated systems with computer assistance in detecting abnormalities in CT-Scan images of the lungs is to perform pattern recognitio

    Classification of Covid-19 Diseases Through Lung CT-Scan Image Using the ResNet-50 Architecture

    Get PDF
    Covid-19 is a respiratory tract disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The Covid-19 disease was first reported in Wuhan, China, in December 2019. The SARS-CoV-2 virus is primarily transmitted through human contact, and the World Health Organization has proclaimed a global pandemic (WHO). Symptoms of Covid-19 can range from asymptomatic to mild and severe. One way to diagnose Covid-19 disease can be done by examining lung abnormalities on the results of a Computed Tomography Scan (CT-Scan) of the lungs. However, determining the diagnostic results requires high accuracy and a long time. For this reason, an automated system is needed to make it easier for medical personnel to diagnose Covid-19 disease quickly and accurately. One of the automated systems with computer assistance in detecting abnormalities in CT-Scan images of the lungs is to perform pattern recognitio

    JAVANESE AND BASHU CUISINE: UNCOVERING THE UNIQUENESS OF TWO CULINARY HERITAGES AND THE GASTRONOMIC POTENTIAL OF SALATIGA CITY

    Get PDF
    Food plays a significant role in a nation's cultural aspects and identity. This has made culinary experiences a primary focus of tourism. As a result, gaining recognition as a gastronomy city by UNESCO has become a desired goal for many cities, including Indonesia. This research aims to provide a clear depiction of how a gastronomy city should be manifested by comparing Chengdu's flavours and culinary characteristics. This comparative method is conducted through a literature review of various articles and journals. The findings reveal that Salatiga can meet the criteria of a gastronomy city by highlighting its unique and appealing Javanese culinary features. Despite having many differences in taste, ingredient usage, and techniques compared to Bashu cuisine, collaboration with the government, cooperation among culinary industry stakeholders, training programs, and the fusion of local traditions with new customs can generate fresh ideas in the culinary world while preserving existing characteristics. Consequently, Indonesian culinary wisdom can gain global recognition and reach an international level

    Implementation of Image Quality Improvement Methods and Lung Segmentation on Chest X-Ray Images Using U-Net Architectural Modifications

    Get PDF
    COVID-19 is an infectious disease that causes acute respiratory distress syndrome due to the SARS-CoV-2 virus. Rapid and accurate screening and early diagnosis of patients play an essential role in controlling outbreaks and reducing the spread of this disease. This disease can be diagnosed by manually reading CXR images, but it is time-consuming and prone to errors. For this reason, this research proposes an automatic medical image segmentation system using a combination of U-Net architecture with Batch Normalization to obtain more accurate and fast results. The method used in this study consists of pre-processing using the CLAHE method and morphology opening, CXR image segmentation using a combination of U-Net-4 Convolution Block architecture with Batch Normalization, then evaluated using performance measures such as accuracy, sensitivity, specificity, F1-score, and IoU. The results showed that the U-Net architecture modified with Batch Normalization had successfully segmented CXR images, as seen from all performance measurement values above 94%

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Effect of Stimulants on Biogenic Methane Formation and Dynamics of Bacterial Population

    No full text
    Coal bed methane (CBM) is a renewable energy source produced through thermogenic and biogenic activity during the coal formation process. The aim of this research was to stimulate biogenic methane formation using simple carbon as stimulant. The microcosm set-up was done using subbituminous coal at 37°C in an anaerobic chamber. Stimulation with Na-acetate, methanol, formic acid, and no additions, respectively, was carried out for 54 days; observation took place on day 2, 15, 24, 45, and54. The results of all treatments showed differences in the initial pH of the basal medium: 7.76 (Na-acetate), 6.69 (methanol), 4.06 (formic acid), and 8.95 (no stimultant), respectively. Addition of Na-acetate resulted in the highest methane formation rate (5.034 mmol/g coal on day 24 of incubation), followed by methanol (4.377 mmol/g on day 24 of incubation), formic acid (2.520 mmol/g on day 22 of incubation), and no addition (1.2 mmol/g on day 15 of incubation). Using denatured gradient gel electrophoresis (DGGE) it was observed that the microbial population dynamics of the microcosm depended on the stimulant. A decrease of bands indicated that the addition of Na-acetate and methanol had caused a decrease of bacterial diversity during the stimulation process compared to the control treatment (without stimulant)

    Evaluation of alum-based adjuvant on the immunogenicity of salmonella enterica serovar typhi conjugates vaccines

    No full text
    The function of adjuvant in maintaining the long-term immune response to Typhoid conjugate vaccine (TCV) was evaluated in. Two TCV products, Vi-DT and Vi-TT, were formulated in either aluminum phosphate (AlPO4) or aluminum hydroxide (AlOH) as adjuvants and TCV formulated in phosphate buffer saline were used as controls. In each case, a group of Balb/c mice was injected intramuscularly with two doses of the formulated vaccine at two-week intervals. The anti-Vi IgG responses were monitored by Enzyme-Linked Immunosorbent Assay and the levels of CD4+ T-cells expressing cytokine were characterized using intracellular cytokine staining. All mice immunized by TCV formulated in adjuvant elicited anti-Vi response to a higher level than the group receiving TCV formulated in PBS. The extent of adsorption of TCV in AlOH was greater than that in AlPO4, and this finding correlated well with the observation that the mice immunized with two doses of Vi-DT(AlOH) elicited anti-Vi IgG to a level higher than that seen with Vi-DT(AlPO4). The mice primed with Vi-TT(AlOH) produced lower anti-Vi IgG (25.901 GM) compared to those receiving Vi-TT(AlPO4) (49.219 GM). However, after the second injection, the former raised the antibody level significantly to 137.008 GM while the latter provided a value of only 104.966 GM. The groups of mice vaccinated by TCV formulated in AlOH expressed IL4 at higher levels than the other groups, which correlated positively with the high Anti-Vi IgG in these animals. In conclusion, AlOH could be recommended as an effective adjuvant for TCV to provide a long-term immune response

    The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies

    No full text
    Background There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. Methods In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). Findings We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. Interpretation Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. Funding This research was funded by AstraZeneca with supporting funds from MRC and BBSRC

    Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial.

    Get PDF
    BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen
    corecore