31 research outputs found

    Mayday, Mayday, Mayday! Moving from European discourses on the precarious and art to the realities of contemporary dance

    Get PDF
    In this article, we encapsulate several key debates in sociology, cultural and arts politics and the media industry on precarious work since its emergence at the turn of the twenty-first century. After setting out the fundamental discourses on precarity, we concentrate on contemporary dance artists as precarious workers and investigate the extent to which different levels of precarity affect them, distinguishing relevant aspects related to socio-economic, mental and physical precarity. We propose that the nature of their work is integrally connected with the 'precarious'. To close, we conclude that protest against precarity itself is of a precarious nature

    Microspectroscopic SERS detection of interleukin-6 with rationally designed gold/silver nanoshells

    Get PDF
    Rationally designed gold/silver nanoshells (Au/Ag-NS) with plasmon resonances optimized for red laser excitation in order to minimize autofluorescence from clinical samples exhibit scattering cross-sections, which are ca. one order of magnitude larger compared with solid quasi-spherical gold nanoparticles (Au-NPs) of the same size. Hydrophilic stabilization and sterical accessibility for subsequent bioconjugation of Au/Ag-NS is achieved by coating their surface with a self-assembled monolayer (SAM) of rationally designed Raman reporter molecules comprising terminal mono- and tri-ethylene glycol (EG) spacers, respectively. The stability of the hydrophilically stabilized metal colloid was tested under different conditions. In contrast to metal colloids coated with a SAM without terminal EG spacers, the hydrophilically stabilized SERS particles do not aggregate under physiologically relevant conditions, i.e., buffer solutions with high ionic strength. Using these rationally designed SERS particles in conjunction with a microspectroscopic acquisition scheme, a sandwich immunoassay for the sensitive detection of interleukin-6 (IL-6) was developed. Several control experiments demonstrate the high specificity of the assay towards IL-6, with a lowest detectable concentration of ca. 1 pg mL -1. The signal strength of the Au/Ag-NS is at least one order of magnitude higher compared with hydrophilically stabilized, non-aggregated solid quasi-spherical Au-NPs of the same size. This journal i

    Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations

    Get PDF
    Ras of complex proteins (Roc) is a Ras-like GTP binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain, and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labeling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains, that in contrast are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-Kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis, and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum RocCOR interface significantly influence the structure and nucleotide-induced conformational changes of the Roc domains

    Common diseases alter the physiological age-related blood microRNA profile

    Get PDF
    Aging is a key risk factor for chronic diseases of the elderly. MicroRNAs regulate post-transcriptional gene silencing through base-pair binding on their target mRNAs. We identified nonlinear changes in age-related microRNAs by analyzing whole blood from 1334 healthy individuals. We observed a larger influence of the age as compared to the sex and provide evidence for a shift to the 5' mature form of miRNAs in healthy aging. The addition of 3059 diseased patients uncovered pan-disease and disease-specific alterations in aging profiles. Disease biomarker sets for all diseases were different between young and old patients. Computational deconvolution of whole-blood miRNAs into blood cell types suggests that cell intrinsic gene expression changes may impart greater significance than cell abundance changes to the whole blood miRNA profile. Altogether, these data provide a foundation for understanding the relationship between healthy aging and disease, and for the development of age-specific disease biomarkers

    Plasma extracellular vesicle tau and TDP-43 as diagnostic biomarkers in FTD and ALS

    Get PDF
    Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values &gt;0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.</p

    Mayday, Mayday, Mayday! Moving from European Discourses on the Precarious and Art to the Realities of Contemporary Dance

    No full text
    In this article, we encapsulate several key debates in sociology, cultural and arts politics and the media industry on precarious work since its emergence at the turn of the twenty-first century. After setting out the fundamental discourses on precarity, we concentrate on contemporary dance artists as precarious workers and investigate the extent to which different levels of precarity affect them, distinguishing relevant aspects related to socio-economic, mental and physical precarity. We propose that the nature of their work is integrally connected with the ‘precarious’. To close, we conclude that protest against precarity itself is of a precarious nature.status: publishe

    Horizontal Hippocampal Slices of the Mouse Brain

    No full text
    The hippocampus is a highly organized structure in the brain that is a part of the limbic system and is involved in memory formation and consolidation as well as the manifestation of severe brain disorders, including Alzheimer's disease and epilepsy. The hippocampus receives a high degree of intra- and inter-connectivity, securing a proper communication with internal and external brain structures. This connectivity is accomplished via different informational flows in the form of fiber pathways. Brain slices are a frequently used methodology when exploring neurophysiological functions of the hippocampus. Hippocampal brain slices can be used for several different applications, including electrophysiological recordings, light microscopic measurements as well as several molecular biological and histochemical techniques. Therefore, brain slices represent an ideal model system to assess protein functions, to investigate pathophysiological processes involved in neurological disorders as well as for drug discovery purposes. There exist several different ways of slice preparations. Brain slice preparations with a vibratome allow a better preservation of the tissue structure and guarantee a sufficient oxygen supply during slicing, which present advantages over the traditional use of a tissue chopper. Moreover, different cutting planes can be applied for vibratome brain slice preparations. Here, a detailed protocol for a successful preparation of vibratome-cut horizontal hippocampal slices of mouse brains is provided. In contrast to other slice preparations, horizontal slicing allows to keep the fibers of the hippocampal input path (perforant path) in a fully intact state within a slice, which facilitates the investigation of entorhinal-hippocampal interactions. Here, we provide a thorough protocol for the dissection, extraction, and acute horizontal slicing of the murine brain, and discuss challenges and potential pitfalls of this technique. Finally, we will show some examples for the use of brain slices in further applications.status: publishe
    corecore