321 research outputs found

    Spontaneous Interlayer Charge Transfer near the Magnetic Quantum Limit

    Full text link
    Experiments reveal that a confined electron system with two equally-populated layers at zero magnetic field can spontaneously break this symmetry through an interlayer charge transfer near the magnetic quantum limit. New fractional quantum Hall states at unusual total filling factors such as \nu = 11/15 (= 1/3 + 2/5) stabilize as signatures that the system deforms itself, at substantial electrostatic energy cost, in order to gain crucial correlation energy by "locking in" separate incompressible liquid phases at unequal fillings in the two layers (e.g., layered 1/3 and 2/5 states in the case of \nu = 11/15).Comment: 4 pages, 4 figures (1 color) included in text. Related papers at http://www.ee.princeton.edu/~hari/papers.htm

    Photoevaporation of protoplanetary discs I: hydrodynamic models

    Full text link
    In this paper we consider the effect of the direct ionizing stellar radiation field on the evolution of protoplanetary discs subject to photoevaporative winds. We suggest that models which combine viscous evolution with photoevaporation of the disc (e.g. Clarke, Gendrin & Sotomayor 2001) incorrectly neglect the direct field after the inner disc has drained, at late times in the evolution. We construct models of the photoevaporative wind produced by the direct field, first using simple analytic arguments and later using detailed numerical hydrodynamics. We find that the wind produced by the direct field at late times is much larger than has previously been assumed, and we show that the mass-loss rate scales as Rin1/2R_{in}^{1/2} (where RinR_{in} is the radius of the instantaneous inner disc edge). We suggest that this result has important consequences for theories of disc evolution, and go on to consider the effects of this result on disc evolution in detail in a companion paper (Alexander, Clarke & Pringle 2006b).Comment: 13 pages, 9 figures. Accepted for publication in MNRA

    Constraints on the ionizing flux emitted by T Tauri stars

    Full text link
    We present the results of an analysis of ultraviolet observations of T Tauri Stars (TTS). By analysing emission measures taken from the literature we derive rates of ionizing photons from the chromospheres of 5 classical TTS in the range ~10^41-10^44 photons/s, although these values are subject to large uncertainties. We propose that the HeII/CIV line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTS. By studying this line ratio in a much larger sample of objects we find evidence for an ionizing flux which does not decrease, and may even increase, as TTS evolve. This implies that a significant fraction of the ionizing flux from TTS is not powered by the accretion of disc material onto the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models.Comment: 8 pages, 5 figures. Accepted for publication in MNRA

    Sheared Flow As A Stabilizing Mechanism In Astrophysical Jets

    Full text link
    It has been hypothesized that the sustained narrowness observed in the asymptotic cylindrical region of bipolar outflows from Young Stellar Objects (YSO) indicates that these jets are magnetically collimated. The j cross B force observed in z-pinch plasmas is a possible explanation for these observations. However, z-pinch plasmas are subject to current driven instabilities (CDI). The interest in using z-pinches for controlled nuclear fusion has lead to an extensive theory of the stability of magnetically confined plasmas. Analytical, numerical, and experimental evidence from this field suggest that sheared flow in magnetized plasmas can reduce the growth rates of the sausage and kink instabilities. Here we propose the hypothesis that sheared helical flow can exert a similar stabilizing influence on CDI in YSO jets.Comment: 13 pages, 2 figure

    Double-Layer Systems at Zero Magnetic Field

    Full text link
    We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities and on interlayer phase coherence. In agreement with earlier work, we find that for very small layer separations and low layer densities, an interlayer-correlated ground state possessing spontaneous interlayer coherence (SILC) is obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer systems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has three components and slightly unequal layer densities, with one layer being spin polarized, and the other unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized ``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55}, 4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange on the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR

    Exchange Instabilities in Semiconductor Double Quantum Well Systems

    Full text link
    We consider various exchange-driven electronic instabilities in semiconductor double-layer systems in the absence of any external magnetic field. We establish that there is no exchange-driven bilayer to monolayer charge transfer instability in the double-layer systems. We show that, within the unrestricted Hartree-Fock approximation, the low density stable phase (even in the absence of any interlayer tunneling) is a quantum ``pseudospin rotated'' spontaneous interlayer phase coherent spin-polarized symmetric state rather than the classical Ising-like charge-transfer phase. The U(1) symmetry of the double quantum well system is broken spontaneously at this low density quantum phase transition, and the layer density develops quantum fluctuations even in the absence of any interlayer tunneling. The phase diagram for the double quantum well system is calculated in the carrier density--layer separation space, and the possibility of experimentally observing various quantum phases is discussed. The situation in the presence of an external electric field is investigated in some detail using the spin-polarized-local-density-approximation-based self-consistent technique and good agreement with existing experimental results is obtained.Comment: 24 pages, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng/preprint/ct.uu/ . Revised final version to appear in PR

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR

    A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens

    Get PDF
    Volatile organic compounds (VOCs) are a group of aromatic or chlorinated organic chemicals commonly found in manufactured products that have high vapor pressure, and thus vaporize readily at room temperature. While airshed VOCs are well studied and have provided insights into public health issues, we suggest that belowground VOCs and the related vapor intrusion process could be equally or even more relevant to public health. The persistence, movement, remediation, and human health implications of subsurface VOCs in urban landscapes remain relatively understudied despite evidence of widespread contamination. This review explores the state of the science of subsurface movement and remediation of VOCs through groundwater and soils, the linkages between these poorly understood contaminant exposure pathways and health outcomes based on research in various animal models, and describes the role of these contaminants in human health, focusing on birth outcomes, notably low birth weight and preterm birth. Finally, this review provides recommendations for future research to address knowledge gaps that are essential for not only tackling health disparities and environmental injustice in post-industrial cities, but also protecting and preserving critical freshwater resources

    Giant planet migration during FU Orionis outbursts: 1D disc models

    Get PDF
    I present the results of semi-analytic calculations of migrating planets in young, outbursting circumstellar discs. Formed far out in the disc via gravitational fragmentation early on in its lifetime, these planets typically migrate at very slow rates and are therefore mostly expected to remain at large radii (such as is the case in HR 8799). I show that changes in the disc structure during FUor outbursts affect the planet’s ability to maintain a gap and can allow a massive giant planet’s semimajor axis to reduce by almost 5 per cent in a single outburst under the most optimistic conditions. Given that a single disc will likely undergo ∼ 10 such outbursts this process can significantly alter the expected radial distribution for GI-formed planets

    Progressive, Transgenerational Changes in Offspring Phenotype and Epigenotype following Nutritional Transition

    Get PDF
    Induction of altered phenotypes during development in response to environmental input involves epigenetic changes. Phenotypic traits can be passed between generations by a variety of mechanisms, including direct transmission of epigenetic states or by induction of epigenetic marks de novo in each generation. To distinguish between these possibilities we measured epigenetic marks over four generations in rats exposed to a sustained environmental challenge. Dietary energy was increased by 25% at conception in F0 female rats and maintained at this level to generation F3. F0 dams showed higher pregnancy weight gain, but lower weight gain and food intake during lactation than F1 and F2 dams. On gestational day 8, fasting plasma glucose concentration was higher and β-hydroxybutyrate lower in F0 and F1 dams than F2 dams. This was accompanied by decreased phosphoenolpyruvate carboxykinase (PEPCK) and increased PPARα and carnitine palmitoyl transferase-1 mRNA expression. PEPCK mRNA expression was inversely related to the methylation of specific CpG dinucleotides in its promoter. DNA methyltransferase (Dnmt) 3a2, but not Dnmt1 or Dnmt3b, expression increased and methylation of its promoter decreased from F1 to F3 generations. These data suggest that the regulation of energy metabolism during pregnancy and lactation within a generation is influenced by the maternal phenotype in the preceding generation and the environment during the current pregnancy. The transgenerational effects on phenotype were associated with altered DNA methylation of specific genes in a manner consistent with induction de novo of epigenetic marks in each generation
    • …
    corecore