9 research outputs found

    Normal stages of embryonic development of a brood parasite, the rosy bitterling Rhodeus ocellatus (Teleostei: Cypriniformes)

    Get PDF
    Bitterlings, a group of freshwater teleosts, provide a fascinating example among vertebrates of the evolution of brood parasitism. Their eggs are laid inside the gill chamber of their freshwater mussel hosts where they develop as brood parasites. Studies of the embryonic development of bitterlings are crucial in deciphering the evolution of their distinct early life-history. Here, we have studied 255 embryos and larvae of the rosy bitterling (Rhodeus ocellatus) using in vitro fertilization and X-ray microtomography (microCT). We describe 11 pre-hatching and 13 post-hatching developmental stages spanning the first 14 days of development, from fertilization to the free-swimming stage. In contrast to previous developmental studies of various bitterling species, the staging system we describe is character-based and therefore more compatible with the widely-used stages described for zebrafish. Our bitterling data provide new insights into to the polarity of the chorion, and into notochord vacuolization and yolk sac extension in relation to body straightening. This study represents the first application of microCT scanning to bitterling development and provides one of the most detailed systematic descriptions of development in any teleost. Our staging series will be an important tool for heterochrony analysis and other comparative studies of teleost development, and may provide insight into the co-evolution of brood parasitism.Animal science

    Open data and digital morphology

    Get PDF
    Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise, that the widespread application of such methods would facilitate access to the underlying digital data, has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for 3D digital data publication, and review the issues around data storage, management and accessibility

    A new selenosteid arthrodire (‘Placodermi’) from the Late Devonian of Morocco

    No full text
    A new genus and species of selenosteid arthrodire is described from the Late Devonian of Morocco.Driscollaspis pankowskiorum, gen. nov. sp. nov., is defined as a selenosteid with a shallow preorbital plate embayment of the central plate, a paranuchal plate embayment of the central plate as a deep embayment determined by the lateral and posterior lobe, a central plate expanded at the contact with the pineal plate as transverse anterior border, and a suborbital plate overlapping the postorbital plate. The dermal ornamentation is tubercular, forming patches of reticular ridges clustered around sensory-line canal junctions in plate centers. The sensory-line canals are distinctly raised just above the level of the dermal ornamentation, a unique character not previously recognized in any arthrodire but seen in some ptyctodontids. A new phylogenetic hypothesis supports the monophyly of the Selenosteidae within which this new taxon is resolved, but emphasizes also unresolved relationships among aspinothoracid arthrodires. The paleogeographic distribution of the Frasnian vertebrates from Morocco and especially the seleonsteids on the western margin of Gondwana and Laurussia are discussed, and the indication for a contact of both continents during the late Frasnian is emphasized

    More bone with less minerals? The effects of dietary phosphorus on the post-cranial skeleton in zebrafish

    No full text
    Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels

    More bone with less minerals? The effects of dietary phosphorus on the post-cranial skeleton in zebrafish

    No full text
    Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels
    corecore