11 research outputs found

    Northern lights assay: a versatile method for comprehensive detection of DNA damage.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadDNA damage assays have various limitations in types of lesions detected, sensitivity, specificity and samples that can be analyzed. The Northern Lights Assay (NLA) is based on 2D Strandness-Dependent Electrophoresis (2D-SDE), a technique that separates nucleic acids based on length, strandness, structure and conformation changes induced by damage. NLA is run on a microgel platform in 20-25 min. Each specimen is analyzed in pairs of non-digested DNA to detect single- and double-stranded breaks (DSBs) and Mbo I-digested DNA to detect other lesions. We used NLA to evaluate DNA in solution and isolated from human cells treated with various genotoxic agents. NLA detected and distinguished between single- and DSBs, interstrand and intrastrand DNA crosslinks, and denatured single-stranded DNA. NLA was sufficiently sensitive to detect biologically relevant amount of DNA damage. NLA is a versatile, sensitive and simple method for comprehensive and simultaneous analysis of multiple types of damage, both in purified DNA and in DNA isolated from cells and body fluids. NLA can be used to evaluate DNA quality in biosamples, monitor complex molecular procedures, assess genotoxicity, diagnose genome instability, facilitate cancer theranostics and in basic nucleic acids research.University of Iceland Research Fund Landspitali University Hospital Research Fund Icelandic Center for Research Funds Lifeind ehf. University of Iceland Research Fun

    To Alfred Deakin

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldGerm line mutations in BRCA1 and BRCA2 account for a large proportion of inherited breast and ovarian cancer. Both genes are involved in DNA repair by homologous recombination and are thought to play a vital role in maintaining genomic stability. A major drawback for long-term functional studies of BRCA in general and BRCA2 in particular has been a lack of representative human breast epithelial cell lines. In the present study, we have established three cell lines from two patients harboring the 999del5 germ line founder mutation in the BRCA2 gene. Primary cultures were established from cellular outgrowth of explanted tissue and subsequently transfected with a retroviral construct containing the HPV-16 E6 and E7 oncogenes. Paired cancer-derived and normal-derived cell lines were established from one patient referred to as BRCA2-999del5-2T and BRCA2-999del5-2N, respectively. In addition, one cell line was derived from cancer-associated normal tissue from another patient referred to as BRCA2-999del5-1N. All three cell lines showed characteristics of breast epithelial cells as evidenced by expression of breast epithelial specific cytokeratins. Cytogenetic analysis showed marked chromosomal instability with tetraploidy and frequent telomeric associations. In conclusion, we have established three breast epithelial cell lines from two patients carrying the BRCA2 Icelandic 999del5 founder mutation. These cell lines form the basis for further studies on carcinogenesis and malignant progression of breast cancer on a defined genetic background

    La Paz : periódico de noticias, avisos y fomento de la provincia de Murcia: Año XXX Número 9310 - 1887 Diciembre 17

    No full text
    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages
    corecore