944 research outputs found
Scalar coupling limits and diphoton Higgs decay from LHC in an model with scalar dark matter
In the context of an nonuniversal extension of the standard model
free from anomalies, we introduce a complex scalar singlet candidate to be dark
matter. In addition, an extra scalar doublet and a heavy scalar singlet are
required to provide masses to all fermions and to break spontaneously the
symmetries. From unitarity and stability of the Higgs potential, we find the
full set of bounds and order relations for the scalar coupling constants. Using
recent data from the CERN-LHC collider, we study the signal strenght of the
diphoton Higgs decay , which imposes very stringent bounds
to the scalar couplings and other scalar parameters. We obtain constraints in
different scenarios of the space of parameters, where decays into dark matter
may or may not contribute according to the mass of the scalar dark matter
candidate. By assuming that the lightest scalar boson of the model corresponds
to the observed Higgs boson, we evaluate deviations from the SM of the
trilineal Higgs self-coupling. The conditions from unitarity, stability and
Higgs diphoton decay data allow trilineal deviations in the range .Comment: Additional figures and analysis in new versio
Physical Examination Tests for Screening and Diagnosis of Cervicogenic Headache: A Systematic Review
It has been suggested that differential diagnosis of headaches should consist of a robust subjective ex-amination and a detailed physical examination of the cervical spine. Cervicogenic headache (CGH) is a form of headache that involves referred pain from the neck. To our knowledge, no studies have sum-marized the reliability and diagnostic accuracy of physical examination tests for CGH. The aim of this study was to summarize the reliability and diagnostic accuracy of physical examination tests used to diagnose CGH. A systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed in four electronic databases (MEDLINE, Web of Science, Embase and Scopus). Full text reports concerning physical tests for the diagnosis of CGH which reported the clinometric properties for assessment of CGH, were included and screened for methodological quality. Quality Appraisal for Reliability Studies (QAREL) and Quality Assessment of Studies of Diagnostic Accuracy (QUADAS-2) scores were completed to assess article quality. Eight articles were retrieved for quality assessment and data extraction. Studies investigating diagnostic reliability of physical exami-nation tests for CGH scored poorer on methodological quality (higher risk of bias) than those of diag-nostic accuracy. There is sufficient evidence showing high levels of reliability and diagnostic accuracy of the selected physical examination tests for the diagnosis of CGH. The cervical flexion-rotation test (CFRT) exhibited both the highest reliability and the strongest diagnostic accuracy for the diagnosis of CGH
Novel effects of strains in graphene and other two dimensional materials
The analysis of the electronic properties of strained or lattice deformed
graphene combines ideas from classical condensed matter physics, soft matter,
and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent
theoretical and experimental work shows the influence of strains in many
properties of graphene not considered before, such as electronic transport,
spin-orbit coupling, the formation of Moir\'e patterns, optics, ... There is
also significant evidence of anharmonic effects, which can modify the
structural properties of graphene. These phenomena are not restricted to
graphene, and they are being intensively studied in other two dimensional
materials, such as the metallic dichalcogenides. We review here recent
developments related to the role of strains in the structural and electronic
properties of graphene and other two dimensional compounds.Comment: 75 pages, 15 figures, review articl
Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.Ministerio de Economía y Competitividad BFU2010–19544, BFU2013–44686-
Resistance of cactus pear (Opuntia ficus-indica) against Pseudocercospora opuntiae through β‑1,3‑glucanase activity and polyphenolic compounds in cladodes
Black spot disease, caused by the hemibiotrophic fungus Pseudocercospora opuntiae, is one of the main phytosanitary problems of cactus (Opuntia spp.). Through mass selection, one cultivar of Opuntia ficus-indica (L.) Mill. resistant to colonization by P. opuntiae was identified. The ethanolic extract of resistant cladodes showed higher levels of total condensed tannins, flavonoids and polyphenols than those of the susceptible genotypes, generating 93% inhibition of P. opuntiae conidial germination in vitro. The total protein in the resistant genotype showed 300% higher β-1,3-glucanase than the susceptible genotype. This increased activity was able to inhibit germination of conidia by 90%, a similar effect to that of the fungicide Captan® (N‑trichloromethylthio-4-cyclohexene 1,2-dicarboximide). It was shown, for the first time, that the combined action of cactus polyphenols and β-1,3-glucanase contributes significantly to resistance against P. opuntiae. Activity of this enzyme and the phytochemical profile can be used as criteria to predict and detect cactus germplasm with resistance to black spot.Fil: Ochoa, Maria Judith. Universidad Nacional de Santiago del Estero. Facultad de Agronomía y Agroindustrias; ArgentinaFil: González Flores, L. M.. Instituto Tecnológico de Tlajomulco; MéxicoFil: Cruz Rubio, J. M.. Instituto Tecnológico de Tlajomulco; MéxicoFil: Rivera López, L. A.. Instituto Tecnológico de Tlajomulco; MéxicoFil: Rodriguez, Sergio A.. Universidad Nacional de Santiago del Estero; ArgentinaFil: Nazareno, Mónica Azucena. Universidad Nacional de Santiago del Estero; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Agronomía y Agroindustrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Gómez Leyva, J. F.. Instituto Tecnológico de Tlajomulco; Méxic
In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer
Constraint-based modeling for genome-scale metabolic networks has emerged in the last years as a promising approach to elucidate drug targets in cancer. Beyond the canonical biosynthetic routes to produce biomass, it is of key importance to focus on metabolic routes that sustain the proliferative capacity through the regulation of other biological means in order to improve in-silico gene essentiality analyses. Polyamines are polycations with central roles in cancer cell proliferation, through the regulation of transcription and translation among other things, but are typically neglected in in silico cancer metabolic models. In this study, we analysed essential genes for the biosynthesis of polyamines. Our analysis corroborates the importance of previously known regulators of the pathway, such as Adenosylmethionine Decarboxylase 1 (AMD1) and uncovers novel enzymes predicted to be relevant for polyamine homeostasis. We focused on Adenine phosphoribosyltransferase (APRT) and demonstrated the detrimental consequence of APRT gene silencing on diferent leukaemia cell lines. Our results highlight the importance of revisiting the metabolic models used for in-silico gene essentiality analyses in order to maximize the potential for drug target identifcation in cance
Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures
Broken symmetries induce strong even-order nonlinear optical responses in materials and at interfaces. Unlike conventional covalently bonded nonlinear crystals, van der Waals (vdW) heterostructures feature layers that can be stacked at arbitrary angles, giving complete control over the presence or lack of inversion symmetry at a crystal interface. Here, we report highly tunable second harmonic generation (SHG) from nanomechanically rotatable stacks of bulk hexagonal boron nitride (BN) crystals and introduce the term twistoptics to describe studies of optical properties in twistable vdW systems. By suppressing residual bulk effects, we observe SHG intensity modulated by a factor of more than 50, and polarization patterns determined by moiré interface symmetry. Last, we demonstrate greatly enhanced conversion efficiency in vdW vertical superlattice structures with multiple symmetry-broken interfaces. Our study paves the way for compact twistoptics architectures aimed at efficient tunable frequency conversion and demonstrates SHG as a robust probe of buried vdW interfaces
Role of a cryptic tRNA gene operon in survival under translational stress
As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.Ministerio de Ciencia, Innovación y Universidades [BFU2016-77097-P to I.L., A.H.; BIO2017-84066-R to F.J.R-C.]; Agencia Estatal de Investigación [PID2019-104784RJ-100/AEI/10.13039/501100011033 to R.L.I.]; National Science Foundation [MCB-1715840 to M.I.]. RB-M's lab at University of Alicante is a member of Proteored, PRB3 and is supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDF. Funding for open access charge: Consejo Superior de Investigaciones Científicas
- …