160 research outputs found

    Dynamic changes in the lower Gállego River (Ebro Basin, NE Spain) and their relationship with anthropic activities and the quaternary substrate

    Get PDF
    The lower Gállego River has been strongly degraded since the 1960s due to human activity (gravel mining, dump accumulation, channeling works), which has produced a deep channel incision. Although these humandriven processes are usually reported in fluvial bibliography, in this case, more complex results are observable. For instance, regarding the depth and incision rates, we observed no relationship between the most anthropically impacted areas and the sections with the deepest incisions; moreover, the deepening process continues 40 years after the human interventions ceased. The reason for this maladjustment is the role played by the exhumation of the underlying Pleistocene substrate, affected by the synsedimentary processes of karstification. The appearance of paleodolines filled with fine sediments on the incision bottom and sides is the main factor conditioning the continuity and magnitude of the process. Besides, these paleodepressions direct the river dynamics and course, thus favoring its widening when they appear and causing the development of a new riverbed (Qt13) while the 1960s floodplain (Qt12) is becoming an old terrace located between 5 and 11 m above the new alluvial bottom. There are no previous records about this kind of consequences in the regional fluvial dynamics. El curso bajo del río Gállego ha sido fuertemente degradado desde los años 1960 por la actividad antrópica (extracción de áridos, acumulaciones de escombros, obras de encauzamiento) que ha conducido a una fuerte incisión. Aunque este tipo de procesos inducidos por el hombre son habituales en la bibliografía fluvial, en este caso se aprecian efectos más complejos. Son, por ejemplo, la profundidad y velocidad de la incisión, la falta de relación entre puntos de máxima intervención y los de mayor incisión o la continuidad del proceso cuarenta años después de cesar ese tipo de acciones. La respuesta a estos desajustes está en el papel que está jugando la exhumación del sustrato pleistoceno infrayacente, afectado por procesos sinsedimentarios de karstificación. La aparición de paleodolinas rellenas de sedimentos finos en el fondo y laterales de la incisión es actualmente el principal determinante de su importancia y continuidad. Además, estas paleodepresiones dirigen la dinámica y trazado del río y puntualmente favorecen ensanchamientos laterales. Esto propicia la aparición de un nuevo lecho (Qt13) a medida que el lecho de los años 1960 (Qt12) va quedando como una terraza colgada entre 5 y 11 m sobre el nuevo fondo aluvial. No hay antecedentes de este tipo de consecuencias en la dinámica fluvial regional

    Facet Formation in the Negative Quenched Kardar-Parisi-Zhang Equation

    Full text link
    The quenched Kardar-Parisi-Zhang (QKPZ) equation with negative non-linear term shows a first order pinning-depinning (PD) transition as the driving force FF is varied. We study the substrate-tilt dependence of the dynamic transition properties in 1+1 dimensions. At the PD transition, the pinned surfaces form a facet with a characteristic slope scs_c as long as the substrate-tilt mm is less than scs_c. When m<scm<s_c, the transition is discontinuous and the critical value of the driving force Fc(m)F_c(m) is independent of mm, while the transition is continuous and Fc(m)F_c(m) increases with mm when m>scm>s_c. We explain these features from a pinning mechanism involving a localized pinning center and the self-organized facet formation.Comment: 4 pages, source TeX file and 7 PS figures are tarred and compressed via uufile

    van der Waals interaction in nanotube bundles : consequences on vibrational modes

    Full text link
    We have developed a pair-potential approach for the evaluation of van der Waals interaction between carbon nanotubes in bundles. Starting from a continuum model, we show that the intertube modes range from 5cm15 cm^{-1} to 60cm160 cm^{-1}. Using a non-orthogonal tight-binding approximation for describing the covalent intra-tube bonding in addition, we confirme a slight chiral dependance of the breathing mode frequency and we found that this breathing mode frequency increase by \sim 10 % if the nanotube lie inside a bundle as compared to the isolated tube.Comment: 5 pages, 2 figure

    A Mathematica Notebook for Computing the Homology of Iterated Products of Groups

    Get PDF
    Let G be a group which admits the structure of an iterated product of central extensions and semidirect products of abelian groups G i (both finite and infinite). We describe a Mathematica 4.0 notebook for computing the homology of G, in terms of some homological models for the factor groups G i and the products involved. Computational results provided by our program have allowed the simplification of some of the formulae involved in the calculation of H n (G). Consequently the efficiency of the method has been improved as well. We include some executions and examples

    Mass Loss Due to Sputtering and Thermal Processes in Meteoroid Ablation

    Full text link
    Conventional meteoroid theory assumes that the dominant mode of ablation is by evaporation following intense heating during atmospheric flight. In this paper we consider the question of whether sputtering may provide an alternative disintegration process of some importance.For meteoroids in the mass range from 10^-3 to 10^-13 kg and covering a meteor velocity range from 11 to 71 km/s, we numerically modeled both thermal ablation and sputtering ablation during atmospheric flight. We considered three meteoroid models believed to be representative of asteroidal (3300 kg m^-3 mass density), cometary (1000 kg m^-3) and porous cometary (300 kg m^-3) meteoroid structures. Atmospheric profiles which considered the molecular compositions at different heights were used in the sputtering calculations. We find that while in many cases (particularly at low velocities and for relatively large meteoroid masses) sputtering contributes only a small amount of mass loss during atmospheric flight, in some cases sputtering is very important. For example, a 10^-10 kg porous meteoroid at 40 km/s will lose nearly 51% of its mass by sputtering, while a 10^-13 kg asteroidal meteoroid at 60 km/s will lose nearly 83% of its mass by sputtering. We argue that sputtering may explain the light production observed at very great heights in some Leonid meteors. The impact of this work will be most dramatic for very small meteoroids such as those observed with large aperture radars.Comment: in pdf form, 48 pgs incl figures and table

    Multimorbidity clusters in patients with chronic obstructive airway diseases in the EpiChron Cohort

    Get PDF
    Chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD), asthma, rhinitis, and obstructive sleep apnea (OSA) are amongst the most common treatable and preventable chronic conditions with high morbidity burden and mortality risk. We aimed to explore the existence of multimorbidity clusters in patients with such diseases and to estimate their prevalence and impact on mortality. We conducted an observational retrospective study in the EpiChron Cohort (Aragon, Spain), selecting all patients with a diagnosis of allergic rhinitis, asthma, COPD, and/or OSA. The study population was stratified by age (i.e., 15–44, 45–64, and = 65 years) and gender. We performed cluster analysis, including all chronic conditions recorded in primary care electronic health records and hospital discharge reports. More than 75% of the patients had multimorbidity (co-existence of two or more chronic conditions). We identified associations of dermatologic diseases with musculoskeletal disorders and anxiety, cardiometabolic diseases with mental health problems, and substance use disorders with neurologic diseases and neoplasms, amongst others. The number and complexity of the multimorbidity clusters increased with age in both genders. The cluster with the highest likelihood of mortality was identified in men aged 45 to 64 years and included associations between substance use disorder, neurologic conditions, and cancer. Large-scale epidemiological studies like ours could be useful when planning healthcare interventions targeting patients with chronic obstructive airway diseases and multimorbidity

    Ab initio many-body calculations on infinite carbon and boron-nitrogen chains

    Full text link
    In this paper we report first-principles calculations on the ground-state electronic structure of two infinite one-dimensional systems: (a) a chain of carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield results were obtained using the restricted Hartree-Fock approach, while the many-body effects were taken into account by second-order M{\o}ller-Plesset perturbation theory and the coupled-cluster approach. The calculations were performed using 6-31GG^{**} basis sets, including the d-type polarization functions. Both at the Hartree-Fock (HF) and the correlated levels we find that the infinite carbon chain exhibits bond alternation with alternating single and triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In addition, we also performed density-functional-theory-based local density approximation (LDA) calculations on the infinite carbon chain using the same basis set. Our LDA results, in contradiction to our HF and correlated results, predict a very small bond alternation. Based upon our LDA results for the carbon chain, which are in agreement with an earlier LDA calculation calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).], we conclude that the LDA significantly underestimates Peierls distortion. This emphasizes that the inclusion of many-particle effects is very important for the correct description of Peierls distortion in one-dimensional systems.Comment: 3 figures (included). To appear in Phys. Rev.

    GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data

    Get PDF
    Genomic Analysis and Rapid Biological ANnotation (GARBAN) is a new tool that provides an integrated framework to analyze simultaneously and compare multiple data sets derived from microarray or proteomic experiments. It carries out automated classifications of genes or proteins according to the criteria of the Gene Ontology Consortium at a level of depth defined by the user. Additionally, it performs clustering analysis of all sets based on functional categories or on differential expression levels. GARBAN also provides graphical representations of the biological pathways in which all the genes/proteins participate. AVAILABILITY: http://garban.tecnun.es
    corecore