58 research outputs found

    Spin Dynamics of the LAGEOS Satellite in Support of a Measurement of the Earth's Gravitomagnetism

    Get PDF
    LAGEOS is an accurately-tracked, dense spherical satellite covered with 426 retroreflectors. The tracking accuracy is such as to yield a medium term (years to decades) inertial reference frame determined via relatively inexpensive observations. This frame is used as an adjunct to the more difficult and data intensive VLBI absolute frame measurements. There is a substantial secular precession of the satellite's line of nodes consistent with the classical, Newtonian precession due to the non-sphericity of the earth. Ciufolini has suggested the launch of an identical satellite (LAGEOS-3) into an orbit supplementary to that of LAGEOS-1: LAGEOS-3 would then experience an equal and opposite classical precession to that of LAGEOS-1. Besides providing a more accurate real-time measurement of the earth's length of day and polar wobble, this paired-satellite experiment would provide the first direct measurement of the general relativistic frame-dragging effect. Of the five dominant error sources in this experiment, the largest one involves surface forces on the satellite, and their consequent impact on the orbital nodal precession. The surface forces are a function of the spin dynamics of the satellite. Consequently, we undertake here a theoretical effort to model the spin ndynamics of LAGEOS. In this paper we present our preliminary results.Comment: 16 pages, RevTeX, LA-UR-94-1289. (Part I of II, postscript figures in Part II

    On the Measurement of the Lense-Thirring effect Using the Nodes of the LAGEOS Satellites in reply to "On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites" by L. Iorio

    Full text link
    In this paper, we provide a detailed description of our recent analysis and determination of the frame-dragging effect obtained using the nodes of the satellites LAGEOS and LAGEOS 2, in reply to the paper "On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites" by L. IorioComment: Added: the precise references to the the ArXiv papers of L. Iorio: gr-qc/0411024 v9 19 Apr 2005 and gr-qc/0411084 v5 19 Apr 2005, explicitly containing his proposal to use the mean anomal

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    Tidal Evolution of Close Binary Asteroid Systems

    Get PDF
    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than five times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent.Comment: 40 pages, 2 tables, 8 figure

    Parametrized Post-Newtonian Orbital Effects in Extrasolar Planets

    Get PDF
    Perturbative Post-Newtonian variations of the standard osculating orbital elements are obtained by using the two-body equations of motion in the Parameterized Post-Newtonian theoretical framework. The results obtained are applied to the Einstein and. Brans - Dicke theories. As a results, the semi-major axis and eccentricity exhibit periodic variation, but no secular changes.. The longitude of periastron and mean longitude at epoch experience both secular and periodic shifts. The Post-Newtonian effects are calculated and discussed for six extrasolar planets.Comment: Accepted for publication in Astrophys. Space Sc

    PROBING GRAVITY IN NEO'S WITH HIGH-ACCURACY LASER-RANGED TEST MASSES

    Get PDF
    Received 9 August 2006Communicated by S. G. TuryshevGravity can be studied in detail in near Earth orbits NEO's using laser-ranged testmasses tracked with few-mm accuracy by ILRS. The two LAGEOS satellites have beenused to measure frame dragging (a truly rotational effect predicted by GR) with a 10%error. A new mission and an optimized, second generation satellite, LARES (I. CiufoliniPI), is in preparation to reach an accuracy of 1% or less on frame dragging, to measuresome PPN parameters, to test the

    Anomalous accelerations in spacecraft flybys of the Earth

    Full text link
    [EN] The flyby anomaly is a persistent riddle in astrodynamics. Orbital analysis in several flybys of the Earth since the Galileo spacecraft flyby of the Earth in 1990 have shown that the asymptotic post-encounter velocity exhibits a difference with the initial velocity that cannot be attributed to conventional effects. To elucidate its origin, we have developed an orbital program for analyzing the trajectory of the spacecraft in the vicinity of the perigee, including both the Sun and the Moon¿s tidal perturbations and the geopotential zonal, tesseral and sectorial harmonics provided by the EGM96 model. The magnitude and direction of the anomalous acceleration acting upon the spacecraft can be estimated from the orbital determination program by comparing with the trajectories fitted to telemetry data as provided by the mission teams. This acceleration amounts to a fraction of a mm/s2 and decays very fast with altitude. The possibility of some new physics of gravity in the altitude range for spacecraft flybys is discussed.Acedo Rodríguez, L. (2017). Anomalous accelerations in spacecraft flybys of the Earth. Astrophysics and Space Science. 362(12):1-15. doi:10.1007/s10509-017-3205-xS11536212Acedo, L.: Galaxies 3, 113 (2015)Acedo, L.: Mon. Not. R. Astron. Soc. 463(2), 2119 (2016)Acedo, L.: Adv. Space Res. 59(7), 1715 (2017). 1701.06939Acedo, L., Bel, L.: Astron. Nachr. 338(1), 117 (2017). 1602.03669Adler, S.L.: Int. J. Mod. Phys. A 25, 4577 (2010). 0908.2414 . doi: 10.1142/S0217751X10050706Adler, S.L.: In: Proceedings of the Conference in Honour of Murray Gellimann’s 80th Birthday, p. 352 (2011). doi: 10.1142/9789814335614_0032Anderson, J.D., Nieto, M.M.: In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis. IAU Symposium, vol. 261, p. 189 (2010). doi: 10.1017/S1743921309990378Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Phys. Rev. Lett. 81(14), 2858 (1998). gr-qc/0104064 . doi: 10.1103/PhysRevLett.81.2858Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Phys. Rev. D 65(8), 082004 (2002). gr-qc/0104064 . doi: 10.1103/PhysRevD.65.082004Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J., Jordan, J.F.: Phys. Rev. Lett. 100(9), 091102 (2008). doi: 10.1103/PhysRevLett.100.091102Atchison, J.A., Peck, M.A.: J. Guid. Control Dyn. 33, 1115 (2010). doi: 10.2514/1.47413Bertolami, O., Francisco, F., Gil, P.J.S.: Class. Quantum Gravity 33(12), 125021 (2016). 1507.08457 . doi: 10.1088/0264-9381/33/12/125021Bolton, S.J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., Bloxham, J., Brown, S., Connerney, J.E.P., DeJong, E., Folkner, W., Gautier, D., Grassi, D., Gulkis, S., Guillot, T., Hansen, C., Hubbard, W.B., Iess, L., Ingersoll, A., Janssen, M., Jorgensen, J., Kaspi, Y., Levin, S.M., Li, C., Lunine, J., Miguel, Y., Mura, A., Orton, G., Owen, T., Ravine, M., Smith, E., Steffes, P., Stone, E., Stevenson, D., Thorne, R., Waite, J., Durante, D., Ebert, R.W., Greathouse, T.K., Hue, V., Parisi, M., Szalay, J.R., Wilson, R.: Science 356, 821 (2017). doi: 10.1126/science.aal2108Cahill, R.T.: ArXiv e-prints (2008). 0804.0039Chamberlin, A., Yeomans, D., Giorgini, J., Chodas, P.: Horizons Ephemeris System (2016). http://ssd.jpl.nasa.gov/horizons.cgi . Accessed: 2016-10-27Chao, B.F.: C. R. Géosci. 338, 1123 (2006). doi: 10.1016/j.crte.2006.09.014Coddington, E., Levinson, N.: McGraw-Hill, New York (1955)Debono, I., Smoot, G.F.: Universe 2(4), 23 (2016). doi: 10.3390/universe2040023Desai, S.D.: J. Geophys. Res., Oceans 107(C11), 7 (2002). 3186. doi: 10.1029/2001JC001224Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., Yoder, C.F.: Science 265, 482 (1994). doi: 10.1126/science.265.5171.482Dyson, F.W., Eddington, A.S., Davidson, C.: Philos. Trans. R. Soc. Lond., Ser. A 220, 291 (1920). doi: 10.1098/rsta.1920.0009Everitt, C.W.F., et al.: Phys. Rev. Lett. 221101(106) (2011)Feng, J.L., Fornal, B., Galon, I., Gardner, S., Smolinsky, J., Tait, T.M.P., Tanedo, P.: Phys. Rev. Lett. 117, 071803 (2016). 1604.07411 . doi: 10.1103/PhysRevLett.117.071803Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: IPN Prog. Rep. 42(196) (2014)Fornberg, B.: Math. Comput. 51(184), 699 (1988). doi: 10.1090/S0025-5718-1988-0935077-0Franklin, A., Fischback, E.: The Rise and Fall of the Fifth Force. Discovery, Pursuit, and Justification in Modern Physics, second edition. Springer, New York (2016)Giorgini, J.D.: Personal communication (2015)Hackmann, E., Laemmerzahl, C.: In: 38th COSPAR Scientific Assembly. COSPAR Meeting, vol. 38, p. 3 (2010)Hafele, J.C.: ArXiv e-prints (2009). 0904.0383ICGEM: International Center for Global Gravity Field Models. http://icgem.gfz-potsdam.de/tom_longtimeIERS: In: Petit, G., Luzum, B. (eds.) IERS Conventions (2010), p. 1. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main (2010)Iess, L., Asmar, S.: Int. J. Mod. Phys. D 16, 2117 (2007). doi: 10.1142/S0218271807011449Iess, L., Asmar, S., Tortora, P.: Acta Astronaut. 65, 666 (2009). doi: 10.1016/j.actaastro.2009.01.049Iess, L., Di Benedetto, M., James, M., Mercolino, M., Simone, L., Tortora, P.: Acta Astronaut. 94, 699 (2014). doi: 10.1016/j.actaastro.2013.06.011Iorio, L.: Sch. Res. Exch. (2009). 0811.3924 . doi: 10.3814/2009/807695Iorio, L.: Astron. J. 142, 68 (2011a). 1102.4572 . doi: 10.1088/0004-6256/142/3/68Iorio, L.: Mon. Not. R. Astron. Soc. 415, 1266 (2011b). 1102.0212Iorio, L.: Europhys. Lett. (2011c). 1105.4145 . doi: 10.1209/0295-5075/96/30001Iorio, L.: Adv. Space Res. 54(11), 2441 (2014a). 1311.4218 . doi: 10.1016/j.asr.2014.06.035Iorio, L.: Galaxies 2, 259 (2014b). 1404.6537 . doi: 10.3390/galaxies2020259Iorio, L.: Universe 1(1), 38 (2015a). doi: 10.3390/universe1010038Iorio, L.: Int. J. Mod. Phys. D 24, 1530015 (2015b). 1412.7673Iorio, L., Giudice, G.: New Astron. 11, 600 (2006). gr-qc/0601055Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Astrophys. Space Sci. 331, 351 (2011). 1009.3225 . doi: 10.1007/s10509-010-0489-5Jouannic, B., Noomen, R., van den IJSel, J.A.A.: In: Proceedings of the 25th International Symposium on Space Flight Dynamics ISSFD, Munich, Germany (2015)Kennefick, D.: Phys. Today 62, 37 (2009). doi: 10.1063/1.3099578King-Hele, D.: Satellite Orbits in an Atmosphere. Theory and Applications. Blackie and Son Ltd., Glasgow (1987)Lämmerzahl, C., Preuss, O., Dittus, H.: In: Dittus, H., Lammerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space. Astrophysics and Space Science Library, vol. 349, p. 75 (2008). doi: 10.1007/978-3-540-34377-6_3Le Verrier, U.: C. R. Hebd. Acad. Sci. 49, 379 (1859)Lemoine, F.G.E.A.: NASA/TP-1998-206861 (1998)Lewis, R.A.: In: Robertson, G.A. (ed.) American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 1103, p. 226 (2009). doi: 10.1063/1.3115499Longair, M.: Philos. Trans. R. Soc., Math. Phys. Eng. Sci. (2015). doi: 10.1098/rsta.2014.0287McCulloch, M.E.: Mon. Not. R. Astron. Soc. 389, 57 (2008). 0806.4159 . doi: 10.1111/j.1745-3933.2008.00523.xMoe, M.M., Wallace, S.D., Moe, K.: In: Washington DC American Geophysical Union Geophysical Monograph Series, vol. 87, p. 349 (1995). doi: 10.1029/GM087p0349Murphy, E.M.: Phys. Rev. Lett. 83, 1890 (1998). doi: 10.1103/PhysRevLett.83.1890Naval Observatory: Dept. of the Navy, USA (2009)Newcomb, S.: Tables of the Four Inner Planets. Government Printing Office, Washington (1895)Nyambuya, G.G.: ArXiv e-prints (2008). 0803.1370Nyambuya, G.G.: New Astron. 57, 22 (2017). doi: 10.1016/j.newast.2017.06.001Páramos, J., Hechenblaikner, G.: Adv. Space Res. 79–80(7), 76 (2013). 1210.7333v1Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Westview Press, Perseus Books Group, London (1995)Pinheiro, M.J.: Phys. Lett. A 378, 3007 (2014). 1404.1101Pinheiro, M.J.: Mon. Not. R. Astron. Soc. 461(4), 3948 (2016)Renzetti, G.: Cent. Eur. J. Phys. 11, 531 (2013). doi: 10.2478/s11534-013-0189-1Rievers, B., Lämmerzahl, C.: Ann. Phys. 523, 439 (2011). 1104.3985 . doi: 10.1002/andp.201100081Roseveare, N.T.: Mercury’s Perihelion, from Le Verrier to Einstein. Clarendon Press, Wotton-under-Edge (1982)Rubincam, D.P.: Icarus 148, 2 (2000). doi: 10.1006/icar.2000.6485Standish, E.M.: In: Macias, A., Lämmerzahl, C., Camacho, A. (eds.) Recent Developments in Gravitation and Cosmology. American Institute of Physics Conference Series, vol. 977, p. 254 (2008). doi: 10.1063/1.2902789Standish, E.M.: In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis. IAU Symposium, vol. 261, p. 179 (2010). doi: 10.1017/S1743921309990354Thompson, P.F., Abrahamson, M., Ardalan, S., Bordi, J.: In: 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, January 26–30, 2014 (2014). http://hdl.handle.net/2014/45519Turyshev, S.G., Toth, V.T.: Living Rev. Relativ. (2010). 1001.3686 . doi: 10.12942/lrr-2010-4Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.-C., Lok, S.M., Ellis, J.: Phys. Rev. Lett. 108(24), 241101 (2012). 1204.2507 . doi: 10.1103/PhysRevLett.108.241101Varieschi, G.U.: Gen. Relativ. Gravit. 46, 1741 (2014). 1401.6503 . doi: 10.1007/s10714-014-1741-zWilhelm, K., Dwivedi, B.N.: Astrophys. Space Sci. 358, 18 (2015). doi: 10.1007/s10509-015-2413-5Will, C.M.: Living Rev. Relativ. 3(9) (2006)Will, C.M.: Class. Quantum Gravity (2015). doi: 10.1098/rsta.2014.0287Will, C.M.: In: Peron, R., Colpi, M., Gorini, V., Moschella, U. (eds.) Gravity: Where Do We Stand? Astrophysics and Space Science Library, vol. 349, p. 9 (2016). doi: 10.1007/978-3-319-20224-2_2Williams, J.G., Boggs, D.H.: Celest. Mech. Dyn. Astron. 126, 89 (2016). doi: 10.1007/s10569-016-9702-3Williams, J.G., Dickey, J.O.: In: Noomen, R., Klosko, S., Noll, C., Pearlman, M. (eds.) Proceedings of 13th International Workshop on Laser Ranging, p. 75 (2003). http://cddisa.gsfc.nasa.gov/lw13/lw_proceedings.htmlWilliams, J.G., Newhall, X.X., Dickey, J.O.: Phys. Rev. D 53, 6730 (1996). doi: 10.1103/PhysRevD.53.6730Williams, J.G., Turyshev, S.G., Boggs, D.H.: Phys. Rev. Lett. 93(26), 261101 (2004). gr-qc/0411113 . doi: 10.1103/PhysRevLett.93.261101Williams, J.G., Turyshev, S.G., Boggs, D.H.: Planet. Sci. 3, 2 (2014). doi: 10.1186/s13535-014-0002-5Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: J. Geophys. Res. 106, 27933 (2001). doi: 10.1029/2000JE001396Wolfram, S.: The Mathematica Book, fifth edition. Wolfram Media, Champaign (2003
    • …
    corecore