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Abstract Perturbative post-Newtonian variations of the
standard osculating orbital elements are obtained by us-
ing the two-body equations of motion in the parameter-
ized post-Newtonian theoretical framework. The results ob-
tained are applied to the Einstein and Brans—Dicke theo-
ries. As a results, the semi-major axis and eccentricity ex-
hibit periodic variation, but no secular changes. The lon-
gitude of periastron and mean longitude at epoch experi-
ence both secular and periodic shifts. The post-Newtonian
effects are calculated and discussed for six extrasolar plan-
ets.

Keywords Parameterized post-Newtonian framework -
Orbital effect in extrasolar planets

1 Introduction

At present, the post-Newtonian effect has been exhibited
gradually in the wake of unceasing development in the post
Newtonian celestial mechanics and due to that the accurate
degree of astronomical instruments is heightened unceas-
ingly. Hence some authors devoted to the research on the
subject and scopes, such as Estabrook (1969), Nordtvedt
(1970), Rubincam (1977), Brumberg (1972, 1985, 2010),
Damour and Deruelle (1985), Soffel et al. (1987), Sof-
fel (1989), Klioner and Kopejkin (1992), Calura et al.
(1997), Brumberg et al. (1995), Brumberg and Brumberg
(2001), Iorio (2005a, 2005b, 2007a, 2011a), Will (2008),
Everitt et al. (2011), Kopeikin et al. (2011) and Iorio
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et al. (2011). In the post-Newtonian celestial mechan-
ics there are some best methods One of the best meth-
ods is the method of parameterized post-Newtonian For-
malism (PPN method) because the theories include the
various different gravitational theories with different pa-
rameters, such as Einstein, Brans—Dicke and other theo-
ries. Hence some authors devoted to the research on this
scope, such as, Misner et al. (1973), Nordtvedt (1976),
Sarmiento (1982), Will (1981, 2006). Moreover, the Asymp-
totic method (Brumberg and Kopejkin 1989, 1990) and
DSX method (Damour et al. 1991, 1992) are also desir-
able.

At present, some authors not only studied the post-
Newtonian effect on the motion of celestial objects in the
solar system, but also in the extrasolar planetary system. It is
interesting and significant for studying the post-Newtonian
effects on the extrasolar planets because in the extrasolar
planetary system the separation between planets and pri-
mary star is nearer mutually and planet mass is nearly Jupiter
mass. Hence the post-Newtonian effect on the orbital ele-
ments of extraplanets is larger. In the recent years some au-
thors studied the post-Newtonian effect or the relativistic ef-
fect in the extrasolar planets (Calura and Montanari 1999;
Miralda-Escudé 2002; Wittenmyer et al. 2005; Iorio 2006,
2011b, 2011c; Adams and Laughlin 2006a, 2006b, 2006c;
Heyl and Giadman 2007; P4l and Kocsis 2008; Jorddn
and Bakos 2008; Ragozzine and Wolf 2009). However,
these authors used the method of the general relativity or
the post-Newtonian approximation to study this problem.
This paper used the parameterized post-Newtonian theories
to study and calculate the parameterized post-Newtonian
effect on the extrasolar planets with large eccentric or-
bit.
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2 R, S and W components for the parameterized
post-Newtonian perturbing acceleration in the
two-body problem

The relative acceleration of two-body with the post-Newton-
ian parameters is given by Will (1981)
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Here f denotes the true anomaly. N is a unit vector in the

radial direction and  are unit vectors in the orbital plane. N
is directed along the radial direction, while s perpendic-
ular to N. In the equation m denotes Gm and the right side
should multipled by ¢ 2. G is the gravitational constant and
¢ is the speed of light. Equation (1) can be written as
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Here — denotes vector.

We resolve the acceleration a into a radial component

RN , a component S, normal to RN and a component W
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normal to the orbital plane, i.e., a = RN + Si+ W(N x 1)
Nxi=L (the unit vector normal to the orbital plane).

On comparison with the expression (2), we get three
scalar accelerative components R, S and W

m m m
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r r r
1 w
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Substituting the following formulas of the problem of
two body into the above formula (Smart 1953)
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where p =a(l — €?).
We can write simply the above formulas as the following
formulas:
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(6)
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W =0.
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Substituting ¥ = p/(1 + ecos f) into the right hand sides of
the expression (2), we obtain

2 1 12 12
r‘"R=—31|Ki+-e"Kr+[14+=¢")K3
p 2 2

1
+ (K1 4+ 2K3)ecos f + 5 (K3 = K»)e? cos Zf},

3 The post-Newtonian perturbing equations and the
perturbing variables

Substituting the perturbing accelerations R, S, W for
the formulas (3), into the following Gaussian equations

(Brouwer and Clemence 1961)
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Based on the post-Newtonian parameters (Will 1981), in the
general relativity the post-Newtonian parameters o] = g =
a3=0,B8=1,y =1, { =0. and in the Brans—Dicke gravi-

Here u is the eccentric anomaly. @ is the longitude of
periastron and w is the argument of periastron. ¢ is the mean

tational theories ] =ap =3 =0, 5, =0,8=1,y = %i—‘a‘j, longitude at epoch. ' '
 is the dimensionless constant of the theory, @ = 5 (Es- We obtain the set of the post-Newtonian perturbing equa-
tabrook 1969; Nordtvedt 1970). tions
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In the set of (6) we transform independent variable
time ¢ into independent variable anomaly f by using dt =
rzdf/na«/2 1 — ¢2 and n%a® = m, and then, integrating the
equations

o fTdo dt
S0 = do = ——|df. 11
7 f 7 /fo[drdf}f (n

In it o denotes arbitrary orbital elements from a, e, w, i, §2,
and gg.
Substituting ‘é—‘t’ for the set of (6) and j—} =r?/na x

V1= ¢ into the above definite integral expressions and in-
tegrating, one obtain the perturbation variables
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8l =n(t —tp) + S¢. u is the eccentric anomaly

Here [/ denotes the mean longitude of periastron

The perturbative solutions (12) and (13) of Keplerian el-
ements include over ten kinds of gravitational theories as
shown in Table 5.1 in Will (1981). Hence the formals (12)—
(13) are important and worth-while. In this paper we only se-
lect two kind theories of general relativity and Brans—Dicke.

In the above last integral expression, we have used al-
ready the next integral expressions

/rdfzafmczu

/ezsi;zfrdfz (62;1)/rdf+/df_e/cosfdf.

Here u is the eccentric anomaly.

4 The secular variations of the orbital elements

It is seen from the results of the integration (8) that there
exist the secular terms for dw and 8¢

(f — fo) =n(t — ty) + Periodic terms

u —ug=n(t — ty) + Periodic terms

Here u denotes the eccentric anomaly and ug is the value of
uast=0.

All other terms are the periodic terms for 8a, de, @
and de. The coefficients of the periodic terms are the am-
plitudes of the periodic terms.

It is interesting for studying the secular terms. Hence we
take the secular terms from the expressions (8) or integrating
the definite integration (7) and taking the lower limit fo =0



Astrophys Space Sci (2012) 341:323-330

327

and upper limit f = 2w, the results of integration are that
the periodic terms disappear and the secular terms appear

per cycle by letting m = G M /c?, we get

Aa=ANe=Al=A2 =0,

- 2 1
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mp 2
2 1
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3
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The secular rates per year are

a=é=1=02=0,
&= A®/P (radlyr),
& = Aeg/ P (rad/yr), (16)
[ =27/P + Ago/ P (radl/yr),

T = At/P (slyr).

Here P denotes the orbital period, in yr.

Substituting K1, K2, K3 and K4 for the expressions (9)
into the expressions (14) and by replacing G and ¢?, then,
we obtain the formulas for the secular variables and the vari-
able rate in the general relativity

N 67 Gm
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; ; ; 61 Gm
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cca(l —e?)
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My=¢—-w—52, Mo=-—nr, c2a(l —e?), (17)
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1 P P
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n 2 2

Table 1 The secular variations ~ -

per revolution for the orbital Exoplanets %wG R %861? %wB -D %83 -D AgGr Atp_p

elements of six extrasolar ("/Rev) ("/Rev) ("/Rev) ("/Re) (s/yr) (s/yr)

planets
HD68988b 0.61” -0.78" 0.55” -0.73" —0.58 0.54
HD16874b 0.62 —0.81 0.56 —0.76 —0.61 0.56
HD217107b 0.52 —0.68 0.47 —0.64 0.57 0.53
HD88133b 0.99 —1.32 —0.90 —1.20 —0.52 0.48
XO-3b 1.24 —1.51 1.10 —1.36 —0.57 0.52

Note: ” denotes are second and:  G.436b 0.60 —0.74 0.52 —0.69 —0.23 0.21

Rev denotes Revolution (Cycle)

Table 2 The secular rates per - B K K R A

year for the orbital elements of Exoplanets DGR GR “B-D €B-D €GR T8—D

six extrasolar planets ("/yr) ("/yr) ("/yr) ("/yr) (s/yr) (s/yr)
HD68988b 35.61” —45.39 31.18 —42.66 33.84 31.16
HD16874b 35.19 —46.60 31.83 —43.18 34.81 32.14
HD217107b 26.86 —35.22 24.29 —33.01 —29.21 27.02
HD88133b 106.64 —153.94 96.76 —128.73 56.24 51.13
XO-3b 142.46 —176.26 125.86 —155.30 —66.22 —59.89
GJ-346b 83.19 —103.19 71.97 —95.04 —31.89 —29.46
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@GR = Awgr/P (radlyr),
éGgr = Aegr/ P (radlyr), (18)

TGr = ATGR/ P (slyr).

In the Brans—Dicke theory

AL 38 nGm (rad/eycle)
@wp_p = — ———— (rad/cycle),
B-D= 5201 _ ) Y
38 nGm 40
Aepp= ————— — (1 — 2
f8-b =75 c2a(1—e2)[ +1g(1=¢)
99 4w Gm (19)
— =1 —e2 -
19 ¢ ]+cza(1 —e?2)

x [6v1—e?—5(1— 62)] (rad/cycle)

P
Atg_p = —E(As — Aw) (s/cycle)

. Awp_
WR_p= % (rad/yr)
Aep_
épp =272 (radiyr) (20)
. Atp_
tp_p=—2"L (siyr)

5 Numerical calculation for six exotrasolar planets

In this paper we choose six exoplanets: HD16871b,
HD68988b, HD217107b, HD88133b, XO-3b and GJ-436b
as an example for the former exoplanets, their P(d),
M*(Mg) are retrieved from Bodenheimer et al. (2003) and
a(Au), e and my (my) are cited from www.mpia.de/homes/
Lyra/planet_naming.html.; for latter three exoplanets, their
P(d) a(Au), M*(Mg) and e are retrieved from Jorddn
and Bakos (2008) and my,(my) is cited from http://www.
exoplanet.eu/index.php. These data are listed in Table 5 of
the Appendix.

Substituting those data into formulas (17)—(20), we ob-
tain the numerical results for the secular variation of the or-
bital element of six exoplanets in Table 1 and Table 2.

Table 3 Comparison with other authors for three exoplanets

Exoplanets This study Jordan and Bakos (2008)
o ("fey) @ (deg/cy) @ (deg/cy)

HD88133b 10664 2°.961 2°.958

XO0-3b 14246 3°.959 3°.886

GJ-436b 8319 2°.311 2°.234
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6 Discussion
6.1 Comparison with the results of other authors

The results of the numerical values of advance of periastron
of HD88133b, XO-3b and GJ-436b in this paper as com-
pared with that of three exoplanets in the other author’s work
(Jordan and Bakos 2008) are listed in Table 3.

We can seen from the above Table 3 that both results are
nearly approximate in the relativistic effect, but there are
some different. The calculated values of this paper are some
larger than that of Jorddn and Bakos (2008) This difference
results in that this paper calculates wg g by using the mass of
two-body (parent star and exoplanet) and Jordan and Bakos
only consider the mass of the parent star and neglect the
mass of exoplanet.

6.2 Comparison with the planets in solar system

Substituting the data of Mercury and Jupiter into the formu-
las (11) for Awg, we obtain the results for the comparison
of the perihelion of Mercury and Jupiter per century with
that of two exoplanets per century listed in Table 4.

We can see from Table 4 that the values of advance
of the periastron of the exoplanets are largest than that of
the planets in the solar system. Therefore, it is important
and meaningful for studying the motion of the exoplan-
ets.

6.3 On the possibility of observing these effects

Let us discuss the possibility of observing these effects. In
the solar system the advance of perihelion of Mercury is
42.91” per century. We may see from Table 3 that in the
extrasolar planetary system the maximal value of advance
of XO-3b is 14246” per century which correspond to 332
time (fold) value of advance of perihelion of the Mercury.
At present, some authors applied the method of TTV (tran-
sit timing variation) or the method of TDV (transit dura-
tion variation). i.e., the secular precession can be detected
through the long-term change in Pyps or in Tp (TDV) to the
observation of the extrasolar planetary system (Agol et al.
2005; Rabus et al. 2009; Gibson et al. 2009; Iorio 2011b).
Therefore, the possibility that the non-Newtonian advances
of the periastra of the extrasolar planets considered can be
observed is certainly interesting and deserves further stud-
ies.

6.4 Slouly orbiting planers

The author emphasezes that when we consider slouly or-
biting planers, we could look like secular term over rela-
tively short observational time interval, i.e., the relatively
short arcs or the short term effect are available and impor-
tant. Hence the author takes the time interval per year in the
Table 1 and Table 2.
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Table 4 The results of ~ = N = =
comparison with that of the Exoplanets (//Aw)max (//Aw)mirl Planets in solar (//Aw)mx (//Aw) small
Mercury and Jupiter ("/cy) ("/cy) system ("/ey) ("/eyt)
XO0-3b 14246" Mercury 42.91”
HD217107b 2686" Jupiter 0.06”
Table 5 Orbital and physical parameters of six extrasolar planetary systems used in the text
Exoplanets P(d) a (Au) M*(mo) my(my) e Ref.
HD68988b 6.276 0.071 1.11 1.90 0.140 Bodenheimer et al. (2003)
HD16874b 6.403 0.065 1.09 0.23 0.081 Bodenheimer et al. (2003)
HD217107b 7.125 0.073 0.98 1.33 0.132 Bodenheimer et al. (2003)
HD88133b 3.416 0.047 1.20 0.22 0.133 Jordan and Bakos (2008)
XO-3b 3.192 0.048 1.41 11.79 0.260 Jordan and Bakos (2008)
GJ-436b 2.644 0.028 0.41 0.0737 0.159 Jordan and Bakos (2008)

myp denotes exoplanet mass which is cited from http://www.mpia.de/homes/Lyra/planet_naming.html for the former three references, and the latter

three references is cited from http://www.exoplanet.eu/index.php for my,

6.5 Prospect for further investigation (the new try)

At present, the fifth force, Yukawa-like interaction has been
investigated in our solar system (Iorio 2007b; Haranas et al.
2011; Tsang 2012). It may be predicted that extrasolar plan-
ets may well be used also for constraining putative fifth
force, Yukawa-like interaction in the further investigation.

7 Conclusions

In this paper we worked out parameterized post-Newtonian
effect on the orbits of celestial objects. The semi-major axis
and eccentricity exhibit periodic variation, but no secular
variation. The longitude of periastron and mean longitude at
epoch exhibit secular and periodic variation. The inclination
and the longitude of ascending node are unaffected. Such ef-
fects on the orbits of the extrasolar planets may be observed
possibly because their effects of advance of periastron are
large as in the calculation of this paper. The results of this
paper based on the parameterized post-Newtonian gravita-
tional metric by the work of C.M. Will, amplified and ex-
tended his work.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix

See Table 5.
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