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Abstract We provide a generalized discussion of tidal evolution to arbitrary order in the
expansion of the gravitational potential between two spherical bodies of any mass ratio. To
accurately reproduce the tidal evolution of a system at separations less than 5 times the radius
of the larger primary component, the tidal potential due to the presence of a smaller sec-
ondary component is expanded in terms of Legendre polynomials to arbitrary order rather
than truncated at leading order as is typically done in studies of well-separated system like
the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in
spin rates of the components, and the change in semimajor axis (orbital separation) are then
derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for
higher-order terms in the tidal potential serves to speed up the tidal evolution of the system
leading to underestimates in the time rates of change of the spin rates, semimajor axis, and
mean motion in the mutual orbit if such corrections are ignored. Special attention is given to
the effect of close orbits on the calculation of material properties of the components, in terms
of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is
found that accurate determinations of the physical parameters of the system, e.g., densities,
sizes, and current separation, are typically more important than accounting for higher-order
terms in the potential when calculating material properties. In the scope of the long-term tidal
evolution of the semimajor axis and the component spin rates, correcting for close orbits is
a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean
motion, the close-orbit correction can be on the order of tens of percent. This work has possi-
ble implications for the determination of the Roche limit and for spin-state alteration during
close flybys.
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1 Introduction

The classic equations for tidal evolution in two-body systems derived or utilized in seminal
papers [e.g., MacDonald (1964), Goldreich (1966), Goldreich and Soter (1966), Mignard
(1979, 1981)], reviews [e.g., Burns (1977), Weidenschilling et al. (1989), Peale (1999)], and
textbooks [e.g., Murray and Dermott (1999), Danby (1992)] are based upon the underlying
assumption that the two spherical components in the system are separated by several times
the radius of the larger primary component. While this assumption is valid in planet-satellite
systems1 such as Earth-Moon, Jupiter-Galilean satellites, and Saturn-Titan, as well as for
Pluto-Charon and the majority of binary main-belt asteroids (with 100-km-scale primaries),
it is not completely accurate for all binary asteroids, especially those in the near-Earth region.
Based upon the compilation by Walsh and Richardson (2006) of measured and estimated
binary asteroid component size and semimajor axis parameters, nearly 75% of near-Earth
and Mars-crossing binaries have inter-component separations between 3 and 5 primary radii.
An updated compilation of parameters by Pravec and Harris (2007) including small main-belt
binaries, those with primaries less than 10 km in diameter, confirms that 75% of binary sys-
tems among these three populations have close mutual orbits. In addition, double asteroids,
those systems with equal-size components that were not counted in the above tallies, such
as (69230) Hermes (Margot et al. 2003, 2006; Pravec et al. 2003), (90) Antiope (Merline
et al. 2000; Michałowski et al. 2004; Descamps et al. 2007), (854) Frostia, (1089) Tama,
(1313) Berna, and (4492) Debussy (Behrend et al. 2006), have separations within 5 primary
radii. The favored formation mechanism for near-Earth, Mars-crossing, and small main-belt
binaries is rotational fission or mass shedding (Margot et al. 2002; Richardson and Walsh
2006; Descamps and Marchis 2008) most likely due to YORP spin-up (Pravec and Harris
2007), a torque on the asteroid spin state due to re-emission of absorbed sunlight (Rubincam
2000; Vokrouhlický and Čapek 2002), where the typical binaries produced have equatorial
mutual orbits with semimajor axes between 2 and 4.5 primary radii and eccentricities below
0.15 (Walsh et al. 2008). Though all binary systems in these three populations may not have
separations of less than 5 primary radii at present, if formed via spin-up, these systems likely
have tidally evolved outward from a closer orbit.

Complex generalized formulae for tidal evolution are presented by Kaula (1964) and
Mignard (1980) as extensions of the work of Darwin (1879a,b, 1880) that account for
higher-order terms in the expansion of the tidal potential, though, nearly universally, even by
Darwin, Kaula, and Mignard themselves, only the leading order is applied in practice under
the assumption of a distant secondary and the negligibility of higher-order terms. To date,
the most common application of higher-order expansions of the tidal potential is in the
Mars-Phobos system where tides on Mars raised by Phobos orbiting at 2.76 Mars radii are
causing the gradual infall of Phobos’s orbit. As the separation between Mars and Phobos
decreases, higher-order terms in the potential expansion must gain importance. With this in
mind, attempts to understand the observed secular acceleration of Phobos and the past history
of its orbit date back to Redmond and Fish (1964) and have continued with Smith and Born
(1976), Lambeck (1979), and Szeto (1983), among others, with Bills et al. (2005) presenting
the most recent treatment of the subject.

Because many binaries exist in a regime where traditional assumptions break down, and
because tidal evolution is most important at small separations, we are motivated to examine
tidal interactions in close orbits. Here, we expand the gravitational potential between two

1 There are small natural satellites of the outer planets that orbit very close to their primaries, but we must keep
in mind that these satellites are part of much more complex dynamical systems than simple two-component
binaries in addition to having negligible masses compared to their primaries.
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Tidal evolution of close binary asteroid systems 317

spherical bodies to arbitrary order as well as allow for a secondary of non-negligible mass.
We then present the resulting equations for the evolution of the component spin rates and the
semimajor axis due to the tidal bulges raised on both components when restricted to systems
with mutual orbits that are both circular and equatorial as suggested for small binaries formed
via spin-up. The effect of accounting for close orbits is examined and compared to the effect
of uncertainties in physical parameters of the binary system.

2 Tidal potential of arbitrary order

The potential V per unit mass at a point on the surface of the primary body of mass Mp, radius
Rp, and uniform density ρp due to a secondary of mass Ms, radius Rs, and uniform density
ρs orbiting on a prograde circular path in the equator plane of the primary with semimajor
axis a measured from the center of mass of the primary is

V = −G
Ms

�
, (1)

where G is the gravitational constant and� is the distance between the center of the secondary
and the point of interest given by

� = a

[
1 − 2

(
Rp

a

)
cosψ +

(
Rp

a

)2
]1/2

, (2)

withψ measured from the line joining the centers of the primary and secondary [e.g., Murray
and Dermott (1999)]. In the spherical polar coordinate system (r, θ, φ) shown in Fig. 1, with
the polar angle θ measured from the rotation axis of the primary and the azimuthal angle φ
measured from an arbitrary reference direction fixed in space, the separation angleψ between
the secondary and the point of interest on the primary is

cosψ = cos θp cos θs + sin θp sin θs cos
(
φp − φs

)
. (3)

For widely separated binary systems where the semimajor axis a is much larger than the
radius of the primary Rp, the potential is expanded in powers of the small term Rp/a such
that

Fig. 1 Geometry for the
potential felt on the surface of the
primary due to the secondary
orbiting a distance a from the
center of mass of the primary.
The dashed line is the locus of
points on the surface of the
spherical primary that are
separated by the angle ψ and
distance � from the position of
the spherical secondary and thus
feel the same potential
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V = −G
Ms

a

[
1 +

(
Rp

a

)
cosψ +

(
Rp

a

)2 1

2

(
3 cos2 ψ − 1

) + · · ·
]
. (4)

The first term is independent of the position of the point of interest and thus produces no
force on the primary. The second term provides the force that keeps the mass element at the
point of interest in a circular orbit about the center of mass of the system. The third term is
the tidal potential

U = −G
Ms R2

p

a3

1

2

(
3 cos2 ψ − 1

)
(5)

that is the focus of past studies of tidal evolution where the the bodies are widely separated
such as in the Earth-Moon system. However, truncation of the expansion of V in (4) at three
terms accurately estimates the true potential in (1) only for separations exceeding 5Rp. For
smaller separations, as are often found among binary asteroids, higher orders in the expansion
of V are necessary.

The full expansion of the potential V in (4) may be written concisely as the sum over
Legendre polynomials P�(cosψ), i.e., zonal harmonic or azimuthally independent surface
harmonic functions, as

V = −G
Ms

a

∞∑
�=0

(
Rp

a

)�
P� (cosψ) , (6)

where the � = 2 term of the expansion of V is the dominant tidal term in (5). The full tidal
potential U including all orders becomes

U = −G
Ms

a

∞∑
�=2

(
Rp

a

)�
P� (cosψ) . (7)

While we will derive the tidal evolution equations in terms of an arbitrary order �, Table 1
lists the order � of the expansion necessary for accurate reproduction of the potential V at
small separations. At 2Rp, the potential must be expanded to at least � = 6, requiring four
additional, but manageable, terms in the expansion. This separation is convenient in terms of
tidal evolution as it is the contact limit of a binary system with two equal-size components
and a reasonable initial separation for the onset of tidal evolution in a newly formed binary

Table 1 Order � of Legendre polynomials necessary in the expansion of the gravitational potential (6) of a
binary system (with ψ = 0) to accurately reproduce the full potential (1) to within 1% at separations less than
a/Rp � 5

� a/Rp Legendre polynomial, P� (cosψ)

2 4.64 1
4 (1 + 3 cos 2ψ)

3 3.16 1
8 (3 cos ψ + 5 cos 3ψ)

4 2.51 1
64 (9 + 20 cos 2ψ + 35 cos 4ψ)

5 2.15 1
128 (30 cos ψ + 35 cos 3ψ + 63 cos 5ψ)

6 1.93 1
512 (50 + 105 cos 2ψ + 126 cos 4ψ + 231 cos 6ψ)

If a/Rp is greater than the value listed, expansion to the corresponding order � suffices. Recall that the fluid
Roche limit is a/Rp = 2.46 (see Sect. 3). Also note the Legendre polynomials are given in terms of cos mψ ,
where m is an integer, rather than the more common form of cosm ψ
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system, regardless of component size, especially for systems formed through primary spin-
up and mass shedding (Walsh et al. 2008). Proceeding inward of 2Rp rapidly requires an
unwieldy number of terms in the expansion (e.g., twice as many additional terms are needed
at 1.5Rp).

3 Roche limit

The well-known classical fluid Roche limit is located at a = 2.46Rp (Chandrasekhar 1969)
for equal density components, so that if one considers a secondary just outside the fluid limit,
one must include the Legendre polynomials of orders � ≤ 4 in the expansion for the potential
felt by the primary. For solid, cohesionless2 bodies (gravitational aggregates or so-called rub-
ble piles) modeled as a dry soil, the Roche limit falls approximately between 1.5Rp and 2Rp

(Holsapple and Michel 2006, 2008; Sharma 2009). The cohesionless Roche limit is based
upon a binary system that is not tidally evolving, but the secondary remains stressed by its
self-gravity, rotation (synchronized to the orbital period), and the difference in gravity from
its near, primary-facing side to its far side. Holsapple and Michel (2006, 2008) illustrate that
the mass ratio of the components has a negligible effect on the Roche limit, but one would
expect that allowing the secondary to have a more rapid spin or allowing for higher-order
tidal terms due to its proximity to the primary will increase the internal stresses and push the
Roche limit farther from the primary, though, as noted by Sharma (2009), these issues have
not been studied in detail.

With a modest amount of cohesion, the secondary may exist within the stated Roche limit
(Holsapple and Michel 2008). For the rough properties of a near-Earth binary of ρp,s =
2 g/cm3 and Rs = 100 m, a cohesion value of <100 Pa is enough to hold the secondary
together at the surface of the primary.3 For comparison, the surface material of comet Tem-
pel 1 excavated by the Deep Impact mission projectile is estimated to have a shear strength
of <65 Pa (A’Hearn et al. 2005) and an effective strength of 103 Pa (Richardson et al. 2007);
fine-grained terrestrial sand is found to have cohesion values up to 250 Pa (Schellart 2000).
Therefore, it is not unreasonable that in the tidal field of the primary, the secondary can stably
exist at the very least within the fluid Roche limit (even if cohesionless), if not also within the
cohesionless Roche limit (with a cohesion comparable to comet regolith or sand), justifying
our later choice to work to order � = 6 corresponding to a separation of 2Rp.

4 External potential of arbitrary order

The tidal potential U� of arbitrary order � ≥ 2 felt by the primary, taken from (7), may be
written concisely as

U� = −gp ζ�,p P� (cosψ) , (8)

2 A cohesionless material has zero shear strength in the absence of confining pressure. The interlocking of
the constituent particles under pressure, however, can give the material shear strength.
3 The cohesion needed to prevent disruption scales as the square of both the density and size of the second-
ary. Thus, for a main-belt binary with a Rs = 10 km, the necessary cohesion is of order 106 Pa, similar to
monolithic rock.

123



320 P. A. Taylor, J.-L. Margot

where gp = G Mp/R2
p is the surface gravity of the primary and

ζ�,p = Ms

Mp

(
Rp

a

)�+1

Rp. (9)

The combination ζ�,p P� (cosψ) is the equilibrium tide height, due to the tidal potential
of order �, that defines the equipotential surface about a primary that is completely rigid
(inflexible). Because the mass ratio Ms/Mp ≤ 1 and we assume a ≥ 2Rp, the quantity
ζ�,p/Rp ≤ 1/8 for all binary systems, and typically ζ�,p/Rp � 1.

For a body with realistic rigidity, the tidal potential U� physically deforms the surface of
the primary by a small distance λ�,p RpS� as a function of position on the primary, where
λ�,p � 1 and S� is a surface harmonic function. Darwin (1879a) and Love (1927) lay the
groundwork for showing that, in general, the deformation of a homogeneous density, incom-
pressible sphere

λ�,p Rp S� = − h�,p
U�
gp

= h�, p ζ�, p P� (cosψ) (10)

is given in terms of the displacement Love number h�,p (Munk and MacDonald 1960),

h�,p = 2�+ 1

2 (�− 1)

1

1 + (2�2+4�+3)μp
�gpρp Rp

, (11)

introducing μp as the rigidity or shear modulus of the primary.4 For bodies less than 200 km
in radius, as all components of binary asteroid systems are, the rigidity μ dominates the
stress due to self-gravity gρR ∼ Gρ2 R2 (Weidenschilling et al. 1989), even for rubble-
pile structures [i.e., the model proposed by Goldreich and Sari (2009)], such that the Love
number h� � 1 for small bodies. With h�,p and ζ�,p/Rp small, and noting from (10) that
λ�,p = h�,p ζ�,p/Rp, the assumption of a small deformation factor λ�,p is justified.

Of particular interest is the external potential felt by the secondary now that the primary
has been deformed. It is this external potential that produces the tidal torque that transfers
angular momentum through the system. Here, we slightly alter our spherical coordinate sys-
tem such that θ now measures the angle from the axis of symmetry of the tidal bulge, as
in Murray and Dermott (1999), such that the surface of the nearly spherical primary is now
given by

R = Rp

(
1 +

∞∑
�=2

λ�,p P� (cos θ)

)
. (12)

The potential felt at a point external to the primary is the sum of the potential of a spherical
primary with radius Rp and that of the deformed shell. However, only that due to the deformed
shell, called the non-central potential by Murray and Dermott (1999), will contribute to the
torque.

In Fig. 2, the reciprocal of the distance � between the external point (r, θ, φ) and a point
on the surface of the primary (r ′, θ ′, φ′) separated by an angle ψ , where r ′ = R from (12), is

1

�
= 1

r

∞∑
�=0

(
Rp

r

)�
P� (cosψ)+ O

(
λ�′,p

)
. (13)

4 Darwin (1879a) realized the correspondence between elastic and viscoelastic media and provides a general-
ized form for the deformation of a viscous spheroid, a function equivalent to (10) he calls σ , that when applied
to an elastic spheroid, in terms of rigidity rather than viscosity, is equivalent to the expression found here.
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Fig. 2 Geometry for the
potential felt at an external point
due to the deformation of the
primary from its initially
spherical shape (dashed). Note
that here θ is measured from the
axis of symmetry of the tidal
bulge

The use of �′ denotes terms based upon the surface deformation rather than the expan-
sion of the distance between the points of interest. The non-central potential (per unit
mass of the object disturbed by the potential) due to the deformed shell with mass element
ρp R3

p
∑∞
�′=2 λ�′,p P�′

(
cos θ ′) d

(
cos θ ′) dφ′ is

Unc = −Gρp R2
p

(
Rp

r

) ∞∑
�′=2

∞∑
�=0

λ�′,p

(
Rp

r

)�∫∫
P�′

(
cos θ ′) P� (cosψ) d

(
cos θ ′) dφ′, (14)

where the double integral goes over the surface of the primary. The integral of the product
of two surface harmonics like the Legendre polynomials over a surface is zero unless � = �′
such that for a specific order � ≥ 2 (MacRobert 1967),

U�,nc = −Gρp R2
p

(
Rp

r

)
λ�,p × 4π

2�+ 1

(
Rp

r

)�
P� (cos θ)

= − 3

2�+ 1
h�,pζ�,pgp

(
Rp

r

)�+1

P� (cos θ) . (15)

By defining the more familiar potential Love number

k�,p = 3

2�+ 1
h�,p = 3

2 (�− 1)

1

1 + (2�2+4�+3)μp
�gpρp Rp

, (16)

which is of a similar order as h�,p, the non-central potential is written in the form

U�,nc = −k�,pgpζ�,p

(
Rp

r

)�+1

P� (cos θ) (17)

such that U�,nc at the surface of the primary is simply k�,pU�. Because μ 	 gρR for small
bodies, the Love number k�,p may be approximated by

k�,p � 3

2 (�− 1)

�

2�2 + 4�+ 3

gpρp Rp

μp
= 2π

�− 1

�

2�2 + 4�+ 3

Gρ2
p R2

p

μp
. (18)
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Taking the external point to be the position of the secondary orbiting at a distance a from the
primary, the complete5 non-central potential per unit secondary mass due to tides raised on
the primary is

Unc = −gp

∞∑
�=2

k�,pζ�,p

(
a

Rp

)−(�+1)

P� (cos θ)

= −G Ms

Rp

∞∑
�=2

k�,p

(
a

Rp

)−2(�+1)

P� (cos θ) . (19)

The non-central potential drops off quickly with increasing separation as the separation to
the sixth power for � = 2 and by an additional square of the separation for each successive
order. The θ term in the Legendre polynomial accounts for the angular separation between
the external point of interest and the tidal bulge of the primary. For the specific location of
the secondary, we define the angle δ as the geometric lag angle between the axis of symmetry
of the tidal bulge and the line connecting the centers of the two components.

5 Tidal dissipation function Q

In addition to the rigidity μ, the response of a homogeneous, incompressible sphere to a
disturbing potential is characterized by the tidal dissipation function Q defined by

Q−1 = 1

2πE∗

∮ (
−d E

dt

)
dt, (20)

where E∗ is the maximum energy stored in the tidal distortion and the integral is the energy
dissipated over one cycle [see Goldreich (1963) or Efroimsky and Williams (2009) for detailed
discussions]. This definition is akin to the quality factor in a damped, linear oscillator and
does not depend on the details of how the energy is dissipated. Friction in the response of the
body to a tide-raising potential plus the rotation of the body itself (at a spin rate ω compared
to the mean motion n in the mutual orbit about the center of mass of the system) lead to
misalignment by the geometric lag angle δ.

The geometric lag relates to a phase lag by ε�mpq = −m δ sign (ω − n), where the �mpq
notation follows Kaula (1964), and we have implicitly assumed a single tidal bulge as done
by Gerstenkorn (1955) and MacDonald (1964) by using a single positive geometric lag δ
independent of the tidal frequencies.6 The tidal dissipation function Q, in turn, relates to the
phase angle as Q−1

�mpq = |cot ε�mpq | � |ε�mpq | + O(ε2
�mpq) (Efroimsky and Williams 2009)

provided energy dissipation is weak (Q�mpq 	 1). The absolute value of ε�mpq is required
on physical grounds to ensure that Q�mpq is positive. Since the tidal dissipation function

5 Here, by complete we mean accounting for all orders �. We have, however, limited the result to first order in
the Love number k�,p because terms of order λ�,p were ignored in (13). These would have produced higher-
order terms in the Love number in the final form of the potential in (19), but because we have argued λ�,p and
k�,p are both small quantities, terms of second and higher order in the Love number are negligible.
6 The definition of the phase lag (Kaula 1964; Efroimsky and Williams 2009), when one ignores changes
in the periapse and node, is ε�mpq = [(�− 2p + q) n − mω]�t�mpq , where the bracketed term is the tidal
frequency and �t�mpq is the positive time lag in the response of the material to the tidal potential. In the
potential expansion by Kaula (1964), only terms satisfying �− 2p = m and q = 0 survive for mutual orbits
that are circular and equatorial such that ε�mpq = −m |ω − n|�t�mpq sign (ω − n) = −m δ sign (ω − n),
assuming a constant time lag and a single (positive) value for geometic lag for all viable combinations of
�mpq.
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is related to the phase lag, a different Q�mpq technically applies to each tidal frequency.
Compared to the dominant order � = 2, where only the �mpq = 2200 term survives in the
setup of our problem,

Q−1
�mpq = mδ = m

2
Q−1

2200 = m

2
Q−1 (21)

in general, where we define Q ≡ Q2200 such that Q�mpq for any tidal frequency is propor-
tional to a single value of Q. This simple relation between Q�mpq and the Q of the dominant
tidal frequency is a direct result of our assumption of a single geometric lag independent of
tidal frequency. Such a choice may not be the most realistic physical model,7 but does allow
for simpler mathematical manipulation. Because Q is necessarily positive regardless of the
sign of the phase lag, we append sign (ω − n) to our forthcoming equations, where the spin
rate ω relates to the tidally distorted component. If ω > n, the bulge leads; if ω < n, the
bulge lags behind.

6 Tidal torques on the components

The force on the secondary due to the distorted primary at order � is −Ms∇U�,nc, and because
we have restricted the problem to a circular, equatorial mutual orbit, the tidal bulge remains in
the orbit plane, and the sole component of the force is tangential to the mutual orbit. Returning
to the notation whereψ measures the angle from the axis of symmetry of the tidal bulge,8 the
force at the location of the secondary is proportional to − ∂P�/∂ψ |ψ=δ and pointed in the −ψ̂
direction. The value of δ is taken to be positive as stated in the previous section such that, for
δ small, the quantity − ∂P�/∂ψ |ψ=δ is positive and the primary bulge attracts the secondary.
For a prograde mutual orbit with ωp > n, the primary bulge pulls the secondary ahead in
the orbit; if ωp < n, the primary bulge retards the motion of the secondary (see Fig. 3). The
resulting torque vector acting upon the orbit of the secondary, which is located at position
r with respect to the center of mass of the primary, is given by ��,p = r × (−Ms∇U�,nc

)
.

Thus, the torque vector, in general, is proportional to −∂P�/∂ψ |ψ=δ
(
ψ̂ × r̂

)
. As defined,

the direction (sign) of ψ̂× r̂ depends on whether the tidal bulge leads or lags, and we indicate
this in the magnitude of the torque via the term sign (ω − n) such that the torque on the orbit
of the secondary due to the �th-order deformation of the primary is

��,p = −Ms
∂U�,nc

∂ψp

= k�,p
G M2

s

Rp

(
a

Rp

)−2(�+1)
⎛
⎝−∂P�

(
cosψp

)
∂ψp

∣∣∣∣∣
ψp=δp

⎞
⎠ sign

(
ωp − n

)
. (22)

where δp is the geometric lag angle between the primary’s tidal bulge and the line of centers.
A positive (negative) torque increases (decreases) the energy of the orbit at a rate �p n. An
equal and opposite torque alters the rotational energy of the primary at a rate −�pωp such that

7 In our model, Q varies inversely with the tidal frequency. Efroimsky and Williams (2009) argue in favor of
a rheological model where Q scales to a positive fractional power of the tidal frequency (at least for terrestrial
planets). It is unclear what rheological model is proper for gravitational aggregates like binary asteroids.
8 In this notation, the tidal potential in (7) deforms the shape of the component according to (10) and produces
the external potential (19) all in terms of the single angle ψ .
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Fig. 3 When the primary spins
faster than the mean motion of
the mutual orbit

(
ωp > n

)
, the

tidal bulge is carried ahead of the
tide-raising secondary. The
resulting torques slow the rotation
of the primary and expand the
mutual orbit. When the primary
spins slower than the mean
motion

(
ωp < n

)
, the torques

speed up the rotation of the
primary and contract the mutual
orbit. Similar diagrams apply to
tides raised on the secondary and
whether or not ωs > n. Note that
ψ is measured from the axis of
symmetry of the tidal bulge of the
primary with ψ = δp being the
geometric lag angle at the
position of the secondary

the total energy E of the system is dissipated over time at a rate Ė = −�p
(
ωp − n

)
< 0 as

heat inside the primary. Though energy is dissipated, angular momentum is conserved due to
the equal and opposite nature of the torques on the orbit and the rotation of the primary. Con-
servation of angular momentum results in the evolution of the mutual orbit and is discussed
in the following section.

A similar torque arises from tides raised on the secondary. By the symmetry of motion
about the center of mass, the torque ��,s is given by swapping the subscripts p and s in (22)
such that

��,s = k�,s
G M2

p

Rs

(
a

Rs

)−2(�+1)
(

− ∂P� (cosψs)

∂ψs

∣∣∣∣
ψs=δs

)
sign (ωs − n) (23)

= k�,p
G M2

s

Rp

(
Rs

Rp

)2�−3 μp

μs

(
a

Rp

)−2(�+1)
(

− ∂P� (cosψs)

∂ψs

∣∣∣∣
ψs=δs

)
sign (ωs − n) ,

where δs is the geometric lag angle between the tidal bulge of the secondary and the line
of centers. This torque changes the orbital energy at a rate �s n, and the equal and opposite
torque alters the rotational energy of the secondary at a rate −�sωs, dissipating energy as
heat in the secondary at a rate Ė = −�s (ωs − n). Torques on the primary and secondary
weaken for higher orders of � and increasing separations, as expected, and do so in the same
manner as the non-central potential in (19). Once the rotation rate of a component synchro-
nizes with the mean motion of the mutual orbit, the associated torque goes to zero due to
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the sign (ω − n) term.9 Note that we have ignored interactions between the tidal bulges of
the components as these will depend on the square (or higher powers) of the Love numbers,
which we have argued are negligible (see Footnote 5).

7 Spin rate and semimajor axis evolution for close orbits

During tidal evolution, angular momentum is transferred between the spins of the compo-
nents and the mutual orbit. For simplicity, assume that the primary and secondary have spin
axes parallel to the normal of the mutual orbit plane and rotate in a prograde sense. Then,
the torque on the distorted primary alters its spin with time at a rate ω̇p = −�p/Ip, where
Ip = αp Mp R2

p is the moment of inertia of the primary. The pre-factor α is 2/5 for a uniform
density sphere, but can vary with the internal structure of the body, and is left as a variable
here such that the change in spin rate of the primary is

ω̇�,p = −k�,p
αp

κ2

1 + κ

(
a

Rp

)−2�+1

n2

⎛
⎝− ∂P�

(
cosψp

)
∂ψp

∣∣∣∣∣
ψp=δp

⎞
⎠ sign

(
ωp − n

)
, (24)

recalling that −∂P�/∂ψ ≥ 0 for small angles and defining the mass ratio κ ≡ Ms/Mp =(
ρs/ρp

) (
Rs/Rp

)3. Also note that n2, which is proportional to
(
a/Rp

)−3, was introduced via
Kepler’s Third Law, n2a3 = G

(
Mp + Ms

)
. For rapidly spinning primaries with ωp > n, the

torque will slow the rotation.
To conserve angular momentum in the system, the change in spin angular momentum,

given by the torque −��,p, plus the change in orbital angular momentum must be zero. The
orbital angular momentum for a circular mutual orbit Mp Ms/

(
Mp + Ms

)
na2 changes with

time as (1/2)Mp Ms/
(
Mp + Ms

)
naȧ such that conservation requires

(
ȧ

Rp

)
�,p

= 2k�,p κ

(
a

Rp

)−2�

n

(
−∂P�

(
cosψp

)
∂ψp

∣∣∣∣∣
ψp=δp

⎞
⎠ sign

(
ωp − n

)
(25)

for each order �. For rapidly spinning primaries, the orbit will expand as angular momentum
is transferred from the spin of the primary to the mutual orbit and, so long as the geometric lag
remains small, higher orders will cause both more rapid despinning of the primary and faster
expansion of the mutual orbit than � = 2 alone. A large secondary with κ ∼ 1 clearly causes
the most rapid tidal evolution. A small secondary with κ � 1 will not cause the primary to
despin appreciably due to the κ2-dependence of (24), but the separation will evolve more
readily as (25) scales as κ .

One can derive the change in the semimajor axis in (25) by other methods including the
work done on the orbit and Gauss’s formulation of Lagrange’s planetary equations. Setting
the time derivative of the total energy of the orbit −G Mp Ms/2a, which is G Mp Msȧ/2a2,
equal to the work done on the orbit ��,pn simplifies to (25). Using Gauss’s formulation for
spherical bodies (see Burns (1976) for a lucid derivation) and a circular mutual orbit,

ȧ� = 2

n
(1 + κ) T�, (26)

where T� is the tangential component of the disturbing force (per unit mass) from the previ-
ous section, which is (1/a) ∂U�,nc/∂ψsign

(
ωp − n

)
with U�,nc given by (17). The (1 + κ)

9 If the mutual orbit were not circular, a radial tide owing to the eccentricity would continue to act despite the
synchronization of the component spin rate to the mean motion.
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term is not typically present in the Gauss formulation, but is appended here to the disturbing
function10 due to the non-inertial nature of the coordinate system centered on the primary
(Rubincam 1973) and is necessary, as stated in Darwin (1880), because the primary “must
be reduced to rest.” One can also argue the term is necessary to account for the reaction
of one body to the tidal action of the other (Ferraz-Mello et al. 2008) as the perturbation is
internal to the binary system rather than an external element (e.g., drag force, third body). The
(1 + κ) term is absent in the formulae of Kaula (1964), which is reasonable if the secondary
is of negligible mass, but we wish to allow for an arbitrary mass ratio. Substitution of the
disturbing force into (26) produces (25). By including the (1 + κ) term in Kaula’s equation
(38), evaluating Kaula’s F and G functions with zero inclination and eccentricity, and recall-
ing that Kaula’s ε�mpq = −m δ sign

(
ωp − n

)
in our notation, we find our evolution of the

semimajor axis in (25) is a special case of Kaula’s generalization,11 as one would expect.
The tidal evolution of the secondary follows similarly. The torque on the distorted sec-

ondary alters its spin with time at a rate ω̇s = −�s/Is,

ω̇�,s = − k�,s
αs

1

κ (1 + κ)

(
Rs

Rp

)2�−1 (
a

Rp

)−2�+1
n2

(
− ∂P� (cosψs)

∂ψs

∣∣∣∣
ψs=δs

)
sign (ωs − n)

= − k�,p
αp

κ

1 + κ

(
Rs

Rp

)2�−5 αp

αs

μp

μs

(
a

Rp

)−2�+1
n2

(
− ∂P� (cosψs)

∂ψs

∣∣∣∣
ψs=δs

)
sign (ωs − n) ,

(27)

and alters the semimajor axis of the mutual orbit at a rate of

(
ȧ

Rp

)
�,s

=2k�,p κ

(
Rs

Rp

)2�−3μp

μs

(
a

Rp

)−2�

n

(
−∂P� (cosψs)

∂ψs

∣∣∣∣
ψs=δs

)
sign (ωs − n) . (28)

The Legendre polynomials in Table 1 are written as sums of terms of the form cos mψ where
m is an integer (see Footnote 11). Thus, the derivative ∂P�/∂ψ |ψ=δ is a sum of terms of the
form sin mδ. For small geometric lag angles (Q 	 1), −∂P�/∂ψ |ψ=δ ≥ 0 and sin mδ � mδ

such that −∂P�/∂ψ |ψ=δ∝ Q−1. Because the derivative of a Legendre polynomial is propor-
tional to Q−1, only the size ratio of the components and their material properties, in terms
of their respective μQ values, determine the relative strength of the torques and the relative
contributions to the orbit expansion,∣∣∣∣��,s��,p

∣∣∣∣ =
∣∣∣∣ ȧ�,s
ȧ�,p

∣∣∣∣ =
(

Rs

Rp

)2�−3 μp Qp

μs Qs
, (29)

10 Algebraically, from the time rate of change of the orbital energy, ȧ = 2a2 Ė/G Mp Ms, and the change in
orbital energy is further related to the velocity of the secondary ṙ and the disturbing force F = −Ms∇Unc
such that Ė = ṙ · F = naMsT for a circular mutual orbit. Replacing Ė by naMsT and using Kepler’s Third
Law, n2a3 = G

(
Mp + Ms

) = G Mp (1 + κ), in the expression for ȧ gives (26) for a specific order �. If Ms
were ignored in Kepler’s Third Law, the more familiar form of Gauss’s formulation would emerge: ȧ = 2T/n.
11 The product of Kaula’s F�mp and G�pq functions is non-zero for circular, equatorial orbits only if �−2p =
m and q = 0. The prefactors on each ψ in the Legendre polynomials listed in Table 1 are the values of m for
each order � that satisfy �−2p = m. Thus, the cosine terms in the Legendre polynomials we list correspond to
�mpq of 2200, 3110, 3300, 4210, 4400, 5120, 5310, 5500, 6220, 6410, and 6600. This correspondence allows
us to link our equations written in terms of Legendre polynomials and a geometric lag to Kaula’s equations
written in terms of the phase lag ε�mpq . While the combinations 2010, 4020, and 6030 satisfy � − 2p = m,
terms with m = 0 cannot contribute to the tidal evolution of the system because, by definition, these terms do
not produce a phase lag. These three terms are responsible for theψ-independent components of the Legendre
polynomials with � = 2, 4, 6 that vanish upon differentiation with respect to ψ .
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with the relative contribution of the secondary decreasing at higher orders of � and for smaller
secondaries. Note that the relative strength of the torques is independent of the mass and den-
sity.12 For classical � = 2 tides on components with similar material properties, the torque
due to the distorted secondary is a factor of the size ratio weaker than the torque due to the
distorted primary. For each higher order in the expansion, the relative strength of the torque
due to the distorted secondary weakens by the square of the size ratio. The changes in the
spin rates compare as∣∣∣∣ ω̇�,sω̇�,p

∣∣∣∣ = 1

κ

(
Rs

Rp

)2�−5 αp

αs

μp Qp

μs Qs
= ρp

ρs

(
Rs

Rp

)2(�−4) αp

αs

μp Qp

μs Qs
. (30)

This differs from a generalization of Darwin’s result (c.f. Darwin (1879b), p. 521) because
we have included the ratio of the Love numbers of the components. At the dominant orders,
� = 2 and 3, with similar densities, shapes, and material properties, the spin rate of the sec-
ondary changes faster than the primary. However, interestingly, for � = 4, the contributions
to the changes in spin rates are equal, and for orders � > 4, the contribution to the change
in spin rate of the primary is greater than that of the secondary. As with the torques, the
relative strength of the changes in spin rates weakens by the square of the size ratio for each
successive order �. For smaller secondaries, the changes in spin rates are smaller than for
similar mass components, and, for all cases, the process of changing the spin of the primary
is slower than for the secondary.

Evaluating the Love number k�,p in (18) and ∂P�/∂ψp from Table 1 explicitly for orders
� ≤ 6, assuming a small geometric lag angle δp, and applying (21), the spin of the primary
changes as

ω̇p = − 8

19

1

αp

π2G2ρ3
p R2

p

μp Qp
κ2

(
a

Rp

)−6

sign
(
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)

×
[

1 + 19

22

(
a

Rp

)−2

+ 380

459

(
a

Rp

)−4

+ 475

584

(
a

Rp

)−6

+ 133

165

(
a

Rp

)−8
]
, (31)

where n has been replaced with Kepler’s Third Law to show the full dependence upon the
separation of the components a/Rp. Using either (27) or (30), the spin of the secondary
changes as

ω̇s = − 8

19

1

αs

π2G2ρ3
p R2

p

μs Qs
κ

(
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Rp

)−1 (
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Rp
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sign (ωs − n)

×
[

1 + 19

22

(
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Rp

)2 (
a

Rp

)−2

+ 380

459

(
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Rp

)4 (
a

Rp

)−4
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(
Rs

Rp

)6 (
a

Rp

)−6

+ 133

165

(
Rs

Rp

)8 (
a

Rp

)−8
]
. (32)

Assuming similar densities for the components, the change in the spin rate of the primary
scales as the size ratio of the components to the sixth power (∝ κ2); the spin rate of the
secondary scales only as the square of the size ratio at leading order, reinforcing from (30)
how the spin of the secondary evolves more rapidly than that of the primary, especially for
small size ratios.

12 However, the absolute strengths of the torques in (22) and (23) do depend on the masses and densities of
the components.
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For close orbits, the separation of the components changes as angular momentum is trans-
ferred to or from the spins of the components such that the overall change in the orbital
separation for � ≤ 6 is the sum of (25) and (28),

ȧ

Rp
= 8

√
3

19

π3/2G3/2ρ
5/2
p R2

p

μp Qp
κ (1 + κ)1/2
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)−11/2

×
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(
ωp − n

) +
(
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) +
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)9 μp Qp
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)]
. (33)

Inside the square brackets, having a secondary of negligible size (Rs/Rp → 0) has the
same effect as having a synchronous secondary (ωs = n); both make the contribution from
the secondary vanish. Of course, if one considers the factor outside the square brackets,
having a secondary of negligible size makes the mass ratio κ negligible, while having a syn-
chronous secondary does not directly affect κ . The change in the mean motion of the mutual
orbit follows from Kepler’s Third Law and (33) as

ṅ

n
= −3

2

(
a

Rp

)−1 (
ȧ

Rp

)
. (34)

Note that in the above Eqs. (31–34), any difference in density between the components is
accounted for in the mass ratio κ; otherwise, only the size ratio of the components is involved
in the terms due to tides raised on the secondary. Obviously, the contribution of the secondary
is most important when the components are of similar size. Not only is the contribution of
the secondary weakened because of its smaller size, it should also be despun faster than
the primary such that its contribution turns off when ωs = n long before the primary does the
same. Furthermore, each equation has a strong inverse dependence on the separation of the
components even at � = 2, and while the inclusion of higher-order terms will be strongest
at small separations, the orbit of a typical outwardly evolving system will expand to a wider
separation rapidly.

8 Effect of close orbit expansion on tidal evolution

Inclusion of higher-order terms for the changes in spin rates and semimajor axis in (31–33)
speeds up the evolution of the system and decreases the tidal timescales. Using up to order
� = 6 compared to � = 2 results in the spin rates of the components changing up to 28%
faster at 2Rp, but falling off quickly with increasing separation (Fig. 4) to less than 4% at 5Rp.
The size ratio of the components only affects ω̇s, where the higher-order terms are weaker
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Fig. 4 Time rates of change of
the spin rate of the primary (left)
and secondary (right) as a
function of the separation of the
components using all orders up
to � = 6 versus using classical
� = 2 tides only. The plotted ratio
amounts to the bracketed portions
of (31) and (32) for the primary
and secondary, respectively. The
change in spin rate of the primary
due to higher-order terms is
unaffected by the size ratio of the
components. The change in spin
rate of the secondary is greater
for larger size ratios, plotted
from top to bottom with
Rs/Rp = 1, 0.8, 0.6, 0.4, and
0.2. The effect of higher-order
terms is always below 30%
beyond 2Rp and falls below 1%
by a separation of 10Rp for all
size ratios

for smaller secondaries. Similarly, for the change in semimajor axis with time, assuming
both components are causing the separation to change in the same sense (sign

(
ωp − n

)
and

sign (ωs − n) have the same value), using up to order � = 6 (Fig. 5) results in a faster
evolution by 21–28% at 2Rp and decreases quickly with increasing separation. Unlike the
changes in spin rates, the largest effect on the evolution of the semimajor axis occurs when
the size ratio is either unity (equal size) or negligible or when the spin of the secondary has
synchronized to the mean motion such that the tidal torque on the secondary vanishes. The
change in semimajor axis with time is least affected by the higher-order terms for a size ratio
of 0.53 with all other size ratios falling within these bounds. According to (34) for the change
in the mean motion with time, the value of ṅ/n using higher-order terms compared to � = 2
has the same form as the change in semimajor axis in Fig. 5.

The strengths of the contributions of the extra terms in the close-orbit correction to the
change in semimajor axis are listed in Table 2. At 2Rp, higher-order terms with � ≥ 3 account
for nearly 25% of the change in semimajor axis with time. Although the � = 6 term is nec-
essary for accurate reproduction of the potential between the bodies to within 1% at 2Rp, it
does not alter the change in semimajor axis with time at the 1% level because of the stronger
dependence of (25) on separation compared to (6). The net contribution of the higher-order
terms in Table 2 decreases by roughly 5% at each value of the separation from Table 1 with
only the � = 3 term having much consequence beyond 3Rp.

The total change in the component spin rates as a function of separation, shown in Fig. 6,
is given by integration of the ratio of (31) and (33) for the primary and the ratio of (32) and
(33) for the secondary. Depending on the size ratio of the components, the total change in the
spin rate of the primary is enhanced by up to 6% at 2Rp over using � = 2 tides only, but not by
more than a few percent at larger separations. For the secondary, perhaps counter-intuitively,
despite the spin of the secondary evolving more rapidly with time by adding higher-order
terms (Fig. 4), its evolution with respect to the separation is less than when using � = 2 only;
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Fig. 5 Time rate of change of the semimajor axis of the mutual orbit as a function of the separation of the
components using all orders up to � = 6 versus using classical � = 2 tides. The plotted ratio amounts to the
bracketed portion of (33) divided by 1 + Rs/Rp with both components having similar μQ parameters and
contributing to the evolution in an additive sense. The solid curve corresponds to a system with components of
equal size (Rs/Rp = 1), a secondary of negligible size (Rs/Rp = 0), or a synchronized secondary (ωs = n).
The lower bound (dashed curve) is for the size ratio Rs/Rp = 0.53. As in Fig. 4, the effect of higher-order
terms is always below 30% beyond 2Rp and falls below 1% by a separation of 10Rp for all size ratios

Table 2 Maximum contributions in percentages by the successive orders � that alter the semimajor axis of
the mutual orbit in (33) at the separations listed in Table 1

ȧ�/ȧ a/Rp = 1.93 a/Rp = 2.15 a/Rp = 2.51 a/Rp = 3.16 a/Rp = 4.64

ȧ2/ȧ 76.25 80.93 86.08 91.27 95.97

ȧ3/ȧ 17.68 15.12 11.80 7.89 3.85

ȧ4/ȧ 4.55 3.14 1.80 0.76 0.17

ȧ5/ȧ 1.20 0.67 0.28 0.07 0.01

ȧ6/ȧ 0.32 0.14 0.04 0.01 −
The strengths of the contributions depend on the size ratio of the components with systems having negligibly
small secondaries or equal-size components having the strongest contributions from higher order terms, which
are shown here. Having a synchronous secondary (ωs = n) also has the same effect on ȧ�/ȧ. It is assumed
the components have similar μQ parameters and the effect of each component’s tides on the semimajor axis
are additive

the deficit is as large as 22% at 2Rp when the size of the secondary is negligible. This is
because for smaller secondaries, the effect of higher-order terms on ω̇s in (32) is reduced,
while the effect of higher-order terms on ω̇p is independent of the size ratio. Thus, for a
rapidly rotating primary, the higher-order terms transfer more angular momentum from the
spin of the primary to the orbit, expanding the separation faster than by � = 2 tides alone
and faster than the spin rate of the secondary changes such that the net effect on �ωs(a) is
smaller.
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Fig. 6 Total change in spin rate of the components based on tidal evolution from an initial separation of
2Rp using all orders up to � = 6 versus using classical � = 2 tides. The coordinate on the x-axis is the final
separation of the tidal evolution. With both components contributing in an additive sense in (33), the spin
rate of the primary is affected more rapidly than in the classical case, while the secondary is affected less
rapidly. The maximum change in the spin rate of the primary occurs for Rs/Rp = 0.53 (upper solid curve)
and the minimum is the dashed line at 1 for Rs/Rp = 0, 1 or a synchronized secondary. The lower solid curve
corresponds to the change in spin rate of the secondary for Rs/Rp → 0. For larger size ratios, the curve for
the secondary moves toward the dashed line at 1

Fig. 7 Evolution of the
semimajor axis with time using
all orders up to � = 6 versus
using classical � = 2 tides. Time
is plotted logarithmically and
scaled to the time necessary for
a system to evolve from 2Rp to
5Rp via � = 2 tides. As in Fig. 5,
the solid curve corresponds to
Rs/Rp = 0, 1 or a synchronized
secondary and the dashed curve
corresponds to Rs/Rp = 0.53.
Using up to � = 6 gives a
correction of order 1% to
classical tides at any point in
the evolution from 2Rp to 5Rp
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Integration of (33) provides the separation as a function of time. For tidal evolution from
an initial separation of 2Rp to a final separation of 5Rp (Fig. 7), the close-orbit correction
is strongest at the onset, expanding the separation more rapidly than � = 2 tides, but only
by about 2% over the same time interval. The contributions from the higher-order terms lose
strength over time as the separation increases resulting in a net effect of expanding the separa-
tion by ∼1% extra by using � = 6 instead of � = 2. From Figs. 6 and 7, the integrated effects
of the close-orbit correction are small, typically of order a few percent; the effects are more
noticeable in the instantaneous rates of change of the spin rates, separation, or mean motion
due to the rapid fall-off in strength of the higher-order terms with increasing separation and
how rapidly the system tidally evolves from small separations.

Rearrangement and integration of (33) allows one to calculate the combination of the
material properties of the components μQ (assuming μp Qp = μs Qs) and the age of the
binary �t based on measurable system parameters. For brevity, we retain only terms due to
tides raised on the primary giving

μQ

�t
= 8

√
3

19
π3/2G3/2ρ5/2

p R2
p κ (1 + κ)1/2

×
⎡
⎢⎣

af/Rp∫
2

x11/2

1 + 19
22 x−2 + 380

459 x−4 + 475
584 x−6 + 133

165 x−8
dx

⎤
⎥⎦

−1

(35)

with x = a/Rp. Because both terms on the left-hand side of (35) are unknown, one may
either estimate the material properties by assuming binary ages (Margot et al. 2002, 2003;
Taylor and Margot 2007), estimate binary ages by assuming material properties (Walsh and
Richardson 2006; Goldreich and Sari 2009), or consider both avenues (Marchis et al. 2008b,a;
Taylor and Margot 2010). Furthermore, precisely because both terms are unknown, assuming
a value for one has an intimate effect on the calculation of the other as changing one’s value
by an order of magnitude changes the result of the other by an order of magnitude. Thus,
when one wishes to find μQ, for instance, choosing an age for the binary injects a great
source of uncertainty into the calculation.

The close-orbit correction enhances the rate at which the separation changes such that, to
provide the same tidal evolution over the same timescale �t , the product μQ must increase
to compensate for the inclusion of the higher-order terms. For classical � = 2 tides, the
denominator of the integrand in (35) vanishes such that the effect of including terms up to
� = 6 alters μQ according to

μQ�=6

μQ�=2
=

∫ af/Rp
2 x11/2 dx∫ af/Rp

2
x11/2

1+ 19
22 x−2+ 380

459 x−4+ 475
584 x−6+ 133

165 x−8 dx
(36)

and is shown as a function of the final separation in Fig. 8. Note that in Fig. 8, the contribution
of the secondary is included in the numerical integration of (33) although it is not explicitly
given in (36) above. Evolution from a close initial separation of 2Rp to a wide separation of
10Rp results in only a ∼1% increase in μQ over the classical value for all size ratios. Thus,
the basic � = 2 tidal mechanism is sufficient for well-separated binaries. On the other hand,
if the final separation is smaller, as is the case for most near-Earth binaries, the correction
is larger, increasing to 5% for evolution from 2Rp to 5Rp and 15% for evolution from 2Rp

to 3Rp. When making a coarse estimate of the material properties of the system, taking the
close orbit into account is not of paramount importance; classical tides will easily provide
an order-of-magnitude estimate of μQ for even the closest of binary asteroids, though the
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Fig. 8 In terms of the ratio
μQ�=6/μQ�=2 for tidal
evolution from 2Rp with both
components contributing,
systems with Rs/Rp = 0, 1 or a
synchronized secondary share the
solid curve and are most affected
by the close-orbit correction; a
system with Rs/Rp = 0.53
(dashed curve) is the least
affected by the close-orbit
correction. Overall, the
close-orbit correction is roughly
25% at 2Rp and quickly falls off
to 5% for evolution from 2Rp to
5Rp and to 1% for evolution to
10Rp for all size ratios. The
components are assumed to have
similar μQ parameters and
contribute in an additive sense in
(33)

result will be slightly underestimated. Complementarily, if higher-order terms are included
and μQ is held fixed, the age of the binary must decrease by the same factor as in Fig. 8
meaning that � = 2 tides provide an upper bound on ages for systems with a givenμQ value.

The use of higher-order terms up to � = 6 is sufficient for exploring the tidal evolution of
binary systems with separations greater than 2Rp. Additional terms with � > 6 make inconse-
quential changes to tidal evolution at these separations as illustrated by the rapid fall-off of the
contributions of the higher-order terms beyond 2Rp in Table 2. Moreover, terms with � > 6
leave Figs. 4–8 unchanged, only having an effect within 2Rp. Thus, if one wishes to proceed
inward of 2Rp, simply using orders of up to � = 6 is insufficient as higher-order terms gain
importance the closer one proceeds to the primary. Though we stated earlier that the number
of terms required can rapidly become unwieldy, one can approximate their strength. For an
arbitrary order � > 2, the term within the square brackets of (33) is approximately

0.8

(
a

Rp

)−2(�−2)
(

sign
(
ωp − n

) +
(

Rs

Rp

)2�−3 μp Qp

μs Qs
sign (ωs − n)

)
, (37)

allowing additional terms to be included without explicit calculation of the Love numbers
k�,p or manipulation of the Legendre polynomials. Similar terms follow for the changes in
spin rates. One must keep in mind that the approximation in (37) is only valid so long as the
small angle approximation holds

(
sin mδ � mδ ∝ Q−1

)
with m ≤ �, which requires Q > 10

to retain 1% accuracy at m = 6 and larger Q as m increases13 (e.g., Q > 20 for m = 10).
Also, having separations of less than 2Rp requires smaller secondaries, since contact occurs
at a separation of (1 + Rs/Rp) Rp, which reduces the contribution of the secondary due to
dependencies upon the size ratio, in addition to demanding consideration of the Roche limit
for the system (see Sect. 3).

13 We have applied (21) to estimate the value of Q required. In general, the small angle approximation holds
to within 1% for Q�mpq ∼ 4 or greater.
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9 Comparison to measurement errors

Take, for example, 66391 (1999 KW4), the best-studied of the near-Earth binary systems
(Ostro et al. 2006; Scheeres et al. 2006). Even with exhaustive analysis of radar imagery,
production of three-dimensional shape models of both components, and investigation of the
system dynamics, physical parameters of the system are not known with extreme precision.
The densities of the primary and secondary components are known to approximately 12 and
25%, respectively. The uncertainty in the density of the primary alone can cause error of
more than 30% in ω̇p, ω̇s, and ȧ/Rp according to (31–33), more than the close-orbit correc-
tion causes in Figs. 4 and 5. The higher estimated density of the secondary in the 1999 KW4
system of 2.81 g/cm3, compared to 1.97 g/cm3 for the primary, directly affects the mass ratio
κ applied in the equations of tidal evolution as one typically assumes similar densities for
the components. Ignoring the density uncertainties, this difference in component densities
alone causes a 43% change in κ that, in turn, affects ω̇p by a factor of two and ω̇s and ȧ/Rp

by approximately 40% as well, again, a larger effect than the close-orbit correction to tidal
evolution. The calculated value of μQ in (35) is affected by density and mass ratio uncer-
tainties in the same way as ȧ/Rp. Furthermore, uncertainties in densities and the dependence
of the mass ratio κ on density differences between the components apply at all separations
unlike the close-orbit correction, which falls off quickly with increasing separation.

One must also consider the effect of the initial separation of the components at the onset
of tidal evolution, a property that is not known for individual systems, but can be estimated
from simulations of binary formation mechanisms [e.g., Walsh and Richardson (2006), Walsh
et al. (2008)] and given a lower bound by the contact limit at

(
1 + Rs/Rp

)
Rp. Assuming

evolution over the same timescale, if the system had an initial separation ai instead of 2Rp,
the effect on μQ calculated with classical � = 2 tides raised only on the primary is

μQi

μQ2
=

1 −
(

2
af/Rp

)13/2

1 − (ai/af )
13/2 . (38)

For a final separation af from 3Rp to 10Rp, unless the actual initial separation ai is within
10% of the final separation (>0.9af ), the value of μQ is affected by less than a factor of two
by assuming an initial separation of 2Rp. Using up to � = 6 and allowing for tides raised on
the secondary with any size ratio do not cause a significant difference in this result.

A similar result is found for the dependence on the final separation of the components,
which one typically takes to be the current separation. If af is the final (current) separation,
then changing the separation to af ′ due to, say, a measurement error causes the calculated
μQ value for tidal evolution from 2Rp to change as

μQf ′

μQf
=

1 −
(

2
af/Rp

)13/2

(af ′/af )
13/2 −

(
2

af/Rp

)13/2 . (39)

We find μQ is affected by less than a factor of two if the final (current) separation is known
within 10%. From the dependence on the initial and final separations, it is clear that the tidal
evolution near the final separation dominates over the early evolution where the close-orbit
correction is necessary. In fact, if instead of calculating μQ, one considers the time taken to
tidally evolve to a final separation af ≥ 4Rp (by assuming a value of μQ instead of an age),
the evolution of the separation from 0.9af to af takes roughly the same amount of time as the
evolution from ai ≤ 2Rp to 0.9af . Thus, precisely when the close-orbit correction is most
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prominent is also when the system requires the least amount of time to evolve, which causes
the mild effect of the close-orbit correction found in Figs. 7 and 8.

Returning to a concrete example, for the 1999 KW4 system, using the equivalent spherical
radius of the primary shape model, the separation of the components a/Rp is known to 3%
as 3.87±0.12 (Ostro et al. 2006). By (39), this small uncertainty can result in a roughly 20%
error in the calculated μQ, more than twice the effect of the close-orbit correction in Fig. 8
at 3.87Rp. Together with the dependence of the μQ calculation on the density values for the
components, the accuracy of measurements of physical parameters in the 1999 KW4 system
is more important than accounting for the proximity of the components to one another.

10 Discussion

We have derived the equations of tidal evolution to arbitrary order in the Legendre polynomial
expansion of the separation between two spherical bodies in a circular and equatorial mutual
orbit allowing for accurate representation of evolution within five primary radii. Equations
written in terms of the Love number k� are applicable to any binary system, while equations
where the Love number has been evaluated have assumed the bodies involved have rigidities
that dominate their self-gravitational stress (characteristic of bodies less than roughly 200 km
in radius). Because higher-order terms cause tidal evolution to proceed faster, choosing to
ignore them produces upper limits on tidal evolution timescales and lower limits on material
properties in terms of the product of rigidity and the tidal dissipation function. However,
we have shown that the correction for close orbits has only a minor integrated effect on
outward tidal evolution and the calculation of material properties, comparable to or less than
the effect of uncertainties in measurable properties such as density, mass ratio, and semima-
jor axis (scaled to the radius of the primary component). In the case of outward evolution,
the binary system evolves rapidly through the range of separations where the close-orbit
correction is strongest, so one can safely ignore the correction to obtain order-of-magnitude
estimates of timescales and material properties using the classical equations for tidal evo-
lution. Accounting for higher orders is more applicable to studying, famously in the case
of Phobos, observed secular accelerations and the infall of a secondary to the surface of its
primary where the higher-order terms instead gain strength.

Though we have presented the expansion of the gravitational potential and the resulting
equations of tidal evolution in the context of two asteroids in mutual orbit, the essence of
this work could be generalized for use in the determination of the Roche limit and the study
of close flybys. The use of a higher-order expansion of the gravitational potential in terms of
Legendre polynomials is warranted whenever the separation of two bodies is within five times
the radius of one of the bodies14 (see Table 1). Historically, in the context of disruption of a
body at the Roche limit or due to a close flyby of a larger body (Sridhar and Tremaine 1992;
Richardson et al. 1998; Holsapple and Michel 2006, 2008; Sharma et al. 2006; Sharma 2009),
stresses are only considered in the much smaller secondary while the primary is assumed
to be rigid. For small secondaries, the cohesionless Roche limit of 1.5–2Rp is much larger
than 5Rs such that higher-order terms in the potential expansion are not necessary. However,
as larger secondaries are considered (Rs/Rp > 0.1), higher-order terms in the gravitational
potential will further stress the secondary near the Roche limit. Also, with components of
increasingly similar size, the assumption of a rigid primary is not appropriate; the tidal stress

14 The potential felt by the primary requires higher-order terms with � > 2 if the separation is less than 5Rp;
the potential felt by the secondary requires higher-order terms with � > 2 if the separation is less than 5Rs.
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on the primary will deform it from a spherical shape and produce an external potential as in
Sect. 4 that will in turn further stress the secondary. If the components are not spin-locked,
tidal torques will also play a role in stressing the secondary. Thus, if evaluating the Roche
limit for components of similar size and/or components that are not spin-locked, one must
consider the description presented here. For disruption during a close flyby, or simply mod-
ification of the spin state of the passing body (Scheeres 2001; Scheeres et al. 2000, 2004),
one must consider the proximity of the flyby in terms of the expansion of the gravitational
potential and whether or not tidal bulges can be raised on the components that would produce
torques capable of further altering the spin state of either component.

It is also important to remember that the higher-order theory presented here has implicitly
assumed initially spherical bodies. Extension of this work from spheres to ellipsoids or to
arbitrary shapes would affect the mutual gravitational potential, linear and angular momen-
tum balance, and orbital equations as described by Scheeres (2009) and Sharma (2010). Once
the shape is made nonspherical in the absence of a tidal potential, the system is subject to a
“direct” torque that naturally occurs from the changing gravitational pull felt by the orbit-
ing component due to the nonspherical shape of the other component. Accounting for the
tidal potential introduces the “indirect” torque described here due to the deformation of one
component by the gravitational presence of the other component. Because the amplitude of
the tidal bulge on asteroids, the parameter λ in this work, can be very small due to its direct
dependence on the ratio of self-gravitational stress to rigidity, its direct dependence on the
mass ratio, and its inverse dependence on the separation raised to the third (or higher) power,
natural deviations from a spherical shape may exceed the amplitude of the tidal bulge. How-
ever, one must recall that the direct torques due to a nonspherical shape will change direction
as the body rotates under the orbiting component tending to cancel the pre- and post-encoun-
ter effects of the torque as opposed to the indirect torque that is in a consistent direction
so long as the bulge always leads or lags the orbiting component. It may be important to
consider direct torques due to natural departures from a spherical shape via the use of shape
models: oblate or prolate spheroids, triaxial ellipsoids, or vertex models such as those made
for the components of the 1999 KW4 binary system and other asteroids.
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Fauvaud, S., Marciniak, A., Michałowski, J., Hirsch, R., Behrend, R., Bernasconi, L., Rinner, C.,
Charbonnel, S.: Eclipsing binary asteroid 90 Antiope. Astron. Astroph. 423, 1159–1168 (2004)

123



338 P. A. Taylor, J.-L. Margot

Mignard, F.: The evolution of the lunar orbit revisited. I. Moon and Planets 20, 301–315 (1979)
Mignard, F.: The evolution of the lunar orbit revisited. II. Moon and Planets 23, 185–201 (1980)
Mignard, F.: The lunar orbit revisited. III. Moon Planets 24, 189–207 (1981)
Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth. Cambridge University Press, Cambridge (1960)
Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)
Ostro, S.J., Margot, J.L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B.,

Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M.,
Suzuki, S.: Radar imaging of binary near-Earth asteroid (66391) 1999 KW4. Science 314, 1276–
1280 (2006)

Peale, S.J.: Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37, 533–602 (1999)
Pravec, P., Harris, A.W.: Binary asteroid population 1. Angular momentum content. Icarus 190, 250–259 (2007)
Pravec, P., Kusnirak, P., Warner, B., Behrend, R., Harris, A.W., Oksanen, A., Higgins, D., Roy, R., Rinner,

C., Demeautis, C., Abbeel, F.van den , Klotz, A., Waelchli, N., Alderweireldt, T., Cotrez, V., Brunetto,
L.: 1937 UB (Hermes). IAU Circ. 8233, 3 (2003)

Redmond, J.C., Fish, F.F.: The luni-tidal interval in Mars and the secular acceleration of Phobos. Icarus 3,
87–91 (1964)

Richardson, D.C., Bottke, W.F., Love, S.G.: Tidal distortion and disruption of Earth-crossing asteroids.
Icarus 134, 47–76 (1998)

Richardson, D.C., Walsh, K.J.: Binary minor planets. Annu. Rev. Earth Planet Sci. 34, 47–81 (2006)
Richardson, J.E., Melosh, H.J., Lisse, C.M., Carcich, B.: A ballistics analysis of the Deep Impact ejecta plume:

Determining comet Tempel 1’s gravity, mass, and density. Icarus 190, 357–390 (2007)
Rubincam, D.P.: The early history of the lunar inclination. NASA-GSFC Rep. X-592-73-328, Goddard Space

Flight Center, Greenbelt, Md. (1973)
Rubincam, D.P.: Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000)
Scheeres, D.J.: Changes in rotational angular momentum due to gravitational interactions between two finite

bodies. Celest. Mech. Dyn. Astron. 81, 39–44 (2001)
Scheeres, D.J.: Stability of the planar full 2-body problem. Celest. Mech. Dyn. Astron. 104, 103–128 (2009)
Scheeres, D.J., Ostro, S.J., Werner, R.A., Asphaug, E., Hudson, R.S.: Effects of gravitational interactions on

asteroid spin states. Icarus 147, 106–118 (2000)
Scheeres, D.J., Marzari, F., Rossi, A.: Evolution of NEO rotation rates due to close encounters with Earth and

Venus. Icarus 170, 312–323 (2004)
Scheeres, D.J., Fahnestock, E.G., Ostro, S.J., Margot, J.L., Benner, L.A.M., Broschart, S.B., Bellerose, J.,

Giorgini, J.D., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M.,
Suzuki, S.: Dynamical configuration of binary near-Earth asteroid (66391) 1999 KW4. Science
314, 1280–1283 (2006)

Schellart, W.P.: Shear test results for cohesion and friction coefficients for different granular materials: Scaling
implications for their usage in analogue modelling. Tectonophys 324, 1–16 (2000)

Sharma, I.: The equilibrium of rubble-pile satellites: The Darwin and Roche ellipsoids for gravitationally held
granular aggregates. Icarus 200, 636–654 (2009)

Sharma, I.: Equilibrium shapes of rubble-pile binaries: The Darwin ellipsoids for gravitationally held granular
aggregates. Icarus 205, 638–657 (2010)

Sharma, I., Jenkins, J.T., Burns, J.A.: Tidal encounters of ellipsoidal granular asteroids with planets.
Icarus 183, 312–330 (2006)

Smith, J.C., Born, G.H.: Secular acceleration of Phobos and Q of Mars. Icarus 27, 51–53 (1976)
Sridhar, S., Tremaine, S.: Tidal disruption of viscous bodies. Icarus 95, 86–99 (1992)
Szeto, A.M.K.: Orbital evolution and origin of the martian satellites. Icarus 55, 133–168 (1983)
Taylor, P.A., Margot, J.L.: Tidal evolution of solar system binaries. Bull. Am. Astron. Soc. 39, 439 (2007)
Taylor, P.A., Margot, J.L.: Binary asteroid systems: Tidal end states and estimates of material properties.

(2010, submitted)
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