389 research outputs found

    Reproductive skew drives patterns of sexual dimorphism in sponge-dwelling snapping shrimps

    Get PDF
    Sexual dimorphism is typically a result of strong sexual selection on male traits used in male male competition and subsequent female choice. However, in social species where reproduction is monopolized by one or a few individuals in a group, selection on secondary sexual characteristics may be strong in both sexes. Indeed, sexual dimorphism is reduced in many cooperatively breeding vertebrates and eusocial insects with totipotent workers, presumably because of increased selection on female traits. Here, we examined the relationship between sexual dimorphism and sociality in eight species of Synalpheus snapping shrimps that vary in social structure and degree of reproductive skew. In species where reproduction was shared more equitably, most members of both sexes were physiologically capable of breeding. However, in species where reproduction was monopolized by a single individual, a large proportion of females but not males-were reproductively inactive, suggesting stronger reproductive suppression and conflict among females. Moreover, as skew increased across species, proportional size of the major chela-the primary antagonistic weapon in snapping shrimps increased among females and sexual dimorphism in major chela size declined. Thus, as reproductive skew increases among Synalpheus, female female competition over reproduction appears to increase, resulting in decreased sexual dimorphism in weapon size

    Social Control of Reproduction and Breeding Monopolization in the Eusocial Snapping Shrimp Synalpheus elizabethae

    Get PDF
    Understanding why individuals within altruistic societies forgo reproduction to raise others\u27 offspring has fascinated scientists since Darwin. Although worker polymorphism is thought to have evolved only in sterile workers, worker subcastes appear to be common among social invertebrates and vertebrates. We asked whether sterility accompanies eusociality and morphological differentiation in snapping shrimps (Synalpheus)-the only known marine eusocial group. We show that workers in Synalpheus elizabethae are reproductively totipotent and that female-but not male-gonadal development and mating are mediated by the presence of a queen, apparently without physical aggression. In queenless experimental colonies, a single immature female worker typically became ovigerous, and no female workers matured in colonies with a resident queen. Thus, eusocial shrimp workers retain reproductive totipotency despite signs of morphological specialization. The failure of most female workers to mature is instead facultative and mediate

    Patterns of genome size variation in snapping shrimp

    Get PDF
    Although crustaceans vary extensively in genome size, little is known about how genome size may affect the ecology and evolution of species in this diverse group, in part due to the lack of large genome size datasets. Here we investigate interspecific, intraspecific, and intracolony variation in genome size in 39 species of Synalpheus shrimps, representing one of the largest genome size datasets for a single genus within crustaceans. We find that genome size ranges approximately 4-fold across Synalpheus with little phylogenetic signal, and is not related to body size. In a subset of these species, genome size is related to chromosome size, but not to chromosome number, suggesting that despite large genomes, these species are not polyploid. Interestingly, there appears to be 35% intraspecific genome size variation in Synalpheus idios among geographic regions, and up to 30% variation in Synalpheus duffyi genome size within the same colony

    Contribution of anadromous fish to the diet of European catfish in a large river system

    Get PDF
    Many anadromous fish species, when migrating from the sea to spawn in fresh waters, can potentially be a valuable prey for larger predatory fish, thereby efficiently linking these two ecosystems. Here, we assess the contribution of anadromous fish to the diet of European catfish (Silurus glanis) in a large river system (Garonne, southwestern France) using stable isotope analysis and allis shad (Alosa alosa) as an example of anadromous fish. Allis shad caught in the Garonne had a very distinct marine delta(13)C value, over 8 per thousand higher after lipid extraction compared to the mean delta(13)C value of all other potential freshwater prey fish. The delta(13)C values of European catfish varied considerably between these two extremes and some individuals were clearly specializing on freshwater prey, whereas others specialized on anadromous fish. The mean contribution of anadromous fish to the entire European catfish population was estimated to be between 53% and 65%, depending on the fractionation factor used for delta(13)C

    Altruism in a volatile world

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.The evolution of altruism – costly self-sacrifice in the service of others – has puzzled biologists since The Origin of Species. For half a century, attempts to understand altruism have been built on the insight that altruists may help relatives to have extra offspring in order to spread shared genes . This theory – known as inclusive fitness – is founded on a simple inequality termed ‘Hamilton’s rule’. However, explanations of altruism have typically ignored the stochasticity of natural environments, which will not necessarily favour genotypes that produce the greatest average reproductive success. Moreover, empirical data across many taxa reveal associations between altruism and environmental stochasticity, a pattern not predicted by standard interpretations of Hamilton’s rule. Here, we derive Hamilton’s rule with explicit stochasticity, leading to novel predictions about the evolution of altruism. We show that of offspring produced by relatives. Consequently, costly altruism can evolve even if it has a net negative effect on the average reproductive success of related recipients. The selective pressure on volatility suppressing altruism is proportional to the coefficient of variation in population fitness, and is therefore diminished by its own success. Our results formalise the hitherto elusive link between bet-hedging and altruism, and reveal missing fitness effects in the evolution of animal societies.PK was supported by the National Geographic Society (GEF-NE 145-15) and a University of Bristol Research Studentship; ADH was supported by the Natural Environment Research Council (NE/L011921/1); ANR was supported by a European Research Council Consolidator Grant (award no. 682253); and SS was supported by the Natural Environment Research Council (NE/M012913/2)

    Body odor quality predicts behavioral attractiveness in humans

    Get PDF
    Growing effort is being made to understand how different attractive physical traits co-vary within individuals, partly because this might indicate an underlying index of genetic quality. In humans, attention has focused on potential markers of quality such as facial attractiveness, axillary odor quality, the second-to-fourth digit (2D:4D) ratio and body mass index (BMI). Here we extend this approach to include visually-assessed kinesic cues (nonverbal behavior linked to movement) which are statistically independent of structural physical traits. The utility of such kinesic cues in mate assessment is controversial, particularly during everyday conversational contexts, as they could be unreliable and susceptible to deception. However, we show here that the attractiveness of nonverbal behavior, in 20 male participants, is predicted by perceived quality of their axillary body odor. This finding indicates covariation between two desirable traits in different sensory modalities. Depending on two different rating contexts (either a simple attractiveness rating or a rating for long-term partners by 10 female raters not using hormonal contraception), we also found significant relationships between perceived attractiveness of nonverbal behavior and BMI, and between axillary odor ratings and 2D:4D ratio. Axillary odor pleasantness was the single attribute that consistently predicted attractiveness of nonverbal behavior. Our results demonstrate that nonverbal kinesic cues could reliably reveal mate quality, at least in males, and could corroborate and contribute to mate assessment based on other physical traits

    Fluctuating Environments, Sexual Selection and the Evolution of Flexible Mate Choice in Birds

    Get PDF
    Environmentally-induced fluctuation in the form and strength of natural selection can drive the evolution of morphology, physiology, and behavior. Here we test the idea that fluctuating climatic conditions may also influence the process of sexual selection by inducing unexpected reversals in the relative quality or sexual attractiveness of potential breeding partners. Although this phenomenon, known as ‘ecological cross-over’, has been documented in a variety of species, it remains unclear the extent to which it has driven the evolution of major interspecific differences in reproductive behavior. We show that after controlling for potentially influential life history and demographic variables, there are significant positive associations between the variability and predictability of annual climatic cycles and the prevalence of infidelity and divorce within populations of a taxonomically diverse array of socially monogamous birds. Our results are consistent with the hypothesis that environmental factors have shaped the evolution of reproductive flexibility and suggest that in the absence of severe time constraints, secondary mate choice behaviors can help prevent, correct, or minimize the negative consequences of ecological cross-overs. Our findings also illustrate how a basic evolutionary process like sexual selection is susceptible to the increasing variability and unpredictability of climatic conditions that is resulting from climate change

    Isotopic Investigation of Contemporary and Historic Changes in Penguin Trophic Niches and Carrying Capacity of the Southern Indian Ocean

    Get PDF
    A temperature-defined regime shift occurred in the 1970s in the southern Indian Ocean, with simultaneous severe decreases in many predator populations. We tested a possible biological link between the regime shift and predator declines by measuring historic and contemporary feather isotopic signatures of seven penguin species with contrasted foraging strategies and inhabiting a large latitudinal range. We first showed that contemporary penguin isotopic variations and chlorophyll a concentration were positively correlated, suggesting the usefulness of predator δ13C values to track temporal changes in the ecosystem carrying capacity and its associated coupling to consumers. Having controlled for the Suess effect and for increase CO2 in seawater, δ13C values of Antarctic penguins and of king penguins did not change over time, while δ13C of other subantarctic and subtropical species were lower in the 1970s. The data therefore suggest a decrease in ecosystem carrying capacity of the southern Indian Ocean during the temperature regime-shift in subtropical and subantarctic waters but not in the vicinity of the Polar Front and in southward high-Antarctic waters. The resulting lower secondary productivity could be the main driving force explaining the decline of subtropical and subantarctic (but not Antarctic) penguins that occurred in the 1970s. Feather δ15N values did not show a consistent temporal trend among species, suggesting no major change in penguins’ diet. This study highlights the usefulness of developing long-term tissue sampling and data bases on isotopic signature of key marine organisms to track potential changes in their isotopic niches and in the carrying capacity of the environment

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Geographic Variation of Strontium and Hydrogen Isotopes in Avian Tissue: Implications for Tracking Migration and Dispersal

    Get PDF
    Background: Isotopes can provide unique solutions to fundamental problems related to the ecology and evolution of migration and dispersal because prior movements of individuals can theoretically be tracked from tissues collected from a single capture. However, there is still remarkably little information available about how and why isotopes vary in wild animal tissues, especially over large spatial scales. Methodology/Principal Findings: Here, we describe variation in both stable-hydrogen (dDF) and strontium ( 87Sr/86SrF) isotopic compositions in the feathers of a migratory songbird, the Tree Swallow (Tachycineta bicolor), across 18 sampling sites in North America and then examine potential mechanisms driving this variation. We found that dDF was correlated with latitude of the sampling site, whereas 87Sr/86SrF was correlated with longitude. dDF was related to dD of meteoric waters where molting occurred and 87Sr/86SrF was influenced primarily by the geology in the area where feathers were grown. Using simulation models, we then assessed the utility of combining both markers to estimate the origin of individuals. Using 13 geographic regions, we found that the number of individuals correctly assigned to their site of origin increased from less than 40 % using either dD or 87Sr/86Sr alone to 74 % using both isotopes. Conclusions/Significance: Our results suggest that these isotopes have the potential to provide predictable an
    corecore