26 research outputs found

    A meta-analysis of global fungal distribution reveals climate-driven patterns

    Get PDF
    The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa

    Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach

    Get PDF
    Temperate coniferous forests sustain the highest levels of biomass of all terrestrial ecosystems and belong to the major carbon sinks on Earth. However, the community composition and its functional diversity depending on the habitat have yet to be unveiled. Here, we analyzed the proteomes from litter, plant roots, rhizosphere, and bulk soil in a temperate coniferous forest at two time points to improve the understanding of the interplay between bacterial and eukaryotic communities in different habitats. Our metaproteomic approach yielded a total of 139,127 proteins that allowed to differentiate the contribution of microbial taxa to protein expression as well as the general functionality based on KEGG Orthology in each habitat. The pool of expressed carbohydrate-active enzymes (CAZymes) was dominated by fungal proteins. While CAZymes in roots and litter targeted mostly the structural biopolymers of plant origin such as lignin and cellulose, the majority of CAZymes in bulk and rhizosphere soil targeted oligosaccharides, starch, and glycogen. Proteins involved in nitrogen cycling were mainly of bacterial origin. Most nitrogen cycling proteins in litter and roots participated in ammonium assimilation while those performing nitrification were the most abundant in bulk and rhizosphere soil. Together, our results indicated niche differentiation of the microbial involvement in carbon and nitrogen cycling in a temperate coniferous forest topsoil

    Al-Bustān. Las fincas aristocráticas y la construcción de los paisajes periurbanos de al-Ándalus y Sicilia

    Get PDF
    Navarro Palazón, Julio, editorLa presente publicación se enmarca en el Proyecto I+D+i «Almunias medievales en el Mediterráneo: Historia y conservación de los paisajes culturales periurbanos» (PID2019-111508GB-I00, dirigido por Julio Navarro Palazón), del Ministerio de Ciencia e Innovación. Agencia Estatal de Investigación. Proyectos de I+D+i, de los Programas Estatales de Generación de Conocimiento y fortalecimiento Científico y Tecnológico del Sistema de I+D+i y de I+D+i Orientada a los Retos de la Sociedad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020. Esta obra es también un fruto destacado del trabajo realizado en el marco de la Unidad Asociada de I+D+i Patrimonio Cultural Árabe e Islámico, Consejo Superior de Investigaciones Científicas-Universidad de Granada, a través de la Escuela de Estudios Árabes de Granad

    Causes of Transition from Democracy to Totalitarism

    No full text
    Additional file 6: Table S2. Summary of proteins annotated as substrate-binding proteins (SBP) from ATP-binding cassette (ABC) transporters detected in the proteomes of Paenibacillus O199. Annotation was performed with RAST

    Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil

    No full text
    Increased utilization of silver nanoparticles (AgNPs) can result in an accumulation of these particles in the environment. The potential detrimental effects of AgNPs in soil may be associated with the low fertility of soils in semiarid regions that are usually subjected to restoration through the application of organic amendments. Microbial communities are responsible for fundamental processes related to soil fertility, yet the potential impacts of low and realistic AgNPs concentrations on soil microorganisms are still unknown. We studied the effects of realistic citrate-stabilized AgNPs concentrations (0.015 and 1.5 μg kg−1 ) at two exposure times (7 and 30 days) on a sandy clay loam Mediterranean soil unamended (SU) and amended with compost (SA). We assessed soil microbial biomass (microbial fatty acids), soil enzyme activities (urease, β-glucosidase, and alkaline phosphatase), and composition of the microbial community (bacterial 16S rRNA gene and fungal ITS2 sequencing) in a microcosm experiment. In the SA, the two concentrations of AgNPs significantly decreased the bacterial biomass after 7 days of incubation. At 30 days of incubation, only a significant decrease in the Gram+ was observed at the highest AgNPs concentration. In contrast, in the SU, there was a significant increase in bacterial biomass after 30 days of incubation at the lowest AgNPs concentration. Overall, we found that fungal biomass was more resistant to AgNPs than bacterial biomass, in both SA and SU. Further, the AgNPs changed the composition of the soil bacterial community in SA, the relative abundance of some bacterial taxa in SA and SU, and fungal richness in SU at 30 days of incubation. However, AgNPs did not affect the activity of extracellular enzymes. This study demonstrates that the exposure time and organic amendments modulate the effects of realistic concentrations of AgNPs in the biomass and composition of the microbial community of a Mediterranean soil.La mayor utilización de nanopartículas de plata (AgNP) puede resultar en una acumulación de estas partículas en el medio ambiente. Los posibles efectos perjudiciales de los AgNP en el suelo pueden estar asociados con la baja fertilidad de los suelos en las regiones semiáridas que suelen estar sometidas a restauración mediante la aplicación de enmiendas orgánicas. Las comunidades microbianas son responsables de procesos fundamentales relacionados con la fertilidad del suelo, sin embargo, aún se desconocen los impactos potenciales de concentraciones bajas y realistas de AgNPs en los microorganismos del suelo. Estudiamos los efectos de concentraciones realistas de AgNP estabilizados con citrato (0,015 y 1,5 μg kg − 1) en dos tiempos de exposición (7 y 30 días) en un suelo mediterráneo franco arcilloso arenoso sin enmendar (SU) y enmendado con compost (SA). Evaluamos la biomasa microbiana del suelo (ácidos grasos microbianos), las actividades de las enzimas del suelo (ureasa, β-glucosidasa y fosfatasa alcalina) y la composición de la comunidad microbiana (gen bacteriano del ARNr 16S y secuenciación de ITS2 fúngico) en un experimento de microcosmos. En SA, las dos concentraciones de AgNP disminuyeron significativamente la biomasa bacteriana después de 7 días de incubación. A los 30 días de incubación, solo se observó una disminución significativa en el Gram + a la concentración más alta de AgNPs. En contraste, en la UB, hubo un aumento significativo en la biomasa bacteriana después de 30 días de incubación a la concentración más baja de AgNPs. En general, encontramos que la biomasa fúngica era más resistente a los AgNP que la biomasa bacteriana, tanto en SA como en SU. Además, los AgNP cambiaron la composición de la comunidad bacteriana del suelo en SA, la abundancia relativa de algunos taxones bacterianos en SA y SU, y la riqueza fúngica en SU ​​a los 30 días de incubación. Sin embargo, los AgNP no afectaron la actividad de las enzimas extracelulares. Este estudio demuestra que el tiempo de exposición y las enmiendas orgánicas modulan los efectos de concentraciones realistas de AgNP en la biomasa y composición de la comunidad microbiana de un suelo mediterráneo.Centro Nacional de Alta Tecnología, Costa RicaUniversidad Estatal a Distancia, Costa RicaUniversidad Nacional, Costa RicaInstitute of Microbiology of the CAS, República ChecaUniversidad de Murcia, EspañaEscuela de Ciencias BiológicasEscuela de Químic

    Environmentally relevant concentrations of silver nanoparticles diminish soil microbial biomass but do not alter enzyme activities or microbial diversity

    No full text
    The increasing use of silver nanoparticles (AgNPs) due to their well-known antimicrobial activity, has led to their accumulation in soil ecosystems. However, the impact of environmental realistic concentrations of AgNPs on the soil microbial community has been scarcely studied. In this work, we have assessed the impact of AgNPs, that mimic real concentrations in nature, on tropical soils cultivated with Coffea arabica under conventional and organic management systems. We evaluated the biomass, extracellular enzyme activities, and diversity of the soil microbial community, in a microcosm experiment as a function of time. After seven days of incubation, we found an increase in microbial biomass in an AgNPs-concentration-independent manner. In contrast, after 60-day-incubation, there was a decrease in Gram+ and actinobacterial biomass, in both soils and all AgNPs concentrations. Soil physico-chemical properties and enzyme activities were not affected overall by AgNPs. Regarding the microbial community composition, only some differences in the relative abundance at phylum and genus level in the fungal community were observed. Our results suggest that environmental concentrations of AgNPs affected microbial biomass but had little impact on microbial diversity and may have little effects on the soil biogeochemical cycles mediated by extracellular enzyme activities.El uso cada vez mayor de nanopartículas de plata (AgNP) debido a su conocida actividad antimicrobiana, ha provocado su acumulación en los ecosistemas del suelo. Sin embargo, el impacto de las concentraciones ambientales realistas de AgNP en la comunidad microbiana del suelo ha sido escasamente estudiado. En este trabajo, hemos evaluado el impacto de los AgNP, que imitan concentraciones reales en la naturaleza, en suelos tropicales cultivados con Coffea arabica bajo sistemas de manejo convencionales y orgánicos. Evaluamos la biomasa, las actividades de las enzimas extracelulares y la diversidad de la comunidad microbiana del suelo, en un experimento de microcosmos en función del tiempo. Después de siete días de incubación, encontramos un aumento en la biomasa microbiana de una manera independiente de la concentración de AgNP. Por el contrario, después de 60 días de incubación, hubo una disminución en la biomasa Gram + y actinobacteriana, tanto en los suelos como en todas las concentraciones de AgNP. Las propiedades físico-químicas del suelo y las actividades enzimáticas no se vieron afectadas en general por los AgNP. Con respecto a la composición de la comunidad microbiana, solo se observaron algunas diferencias en la abundancia relativa a nivel de filo y género en la comunidad fúngica. Nuestros resultados sugieren que las concentraciones ambientales de AgNP afectaron la biomasa microbiana, pero tuvieron poco impacto en la diversidad microbiana y pueden tener pocos efectos en los ciclos biogeoquímicos del suelo mediados por actividades de enzimas extracelulares.Universidad Nacional, Costa RicaInstituto Tecnológico de Costa RicaUniversidad Estatal a Distancia, Costa RicaEscuela de Ciencias BiológicasEscuela de Químic

    Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem

    No full text
    Changing climatic conditions (warming and decreasing precipitation) have been found to be a threat to the agricultural sustainability of Mediterranean croplands. From the climate change perspective, biochar amendment may interact with the effects of warming and drought stresses on soil ecosystems. However, the responses of soil microbial communities to the joint effects of climate change and biochar in Mediterranean croplands are not sufficiently known. To help fill this knowledge gap, in this work we used a field experiment to determine the effects of partial rain exclusion alone or combined with a soil temperature increase in biochar-amended (20 t ha) and unamended plots under crop rotation on soil chemical properties, enzyme activities, and the microbial community activity, structure, composition, abundance, and functions. The biomass, composition, and activity of the soil bacterial and fungal communities were more responsive to biochar addition than to climate manipulation. Thus, soil chemical parameters, enzyme activities and the relative abundances of bacterial populations were not responsive to the interaction of biochar and climate manipulation, while the predicted functionality of the bacterial community was modified by both factors. Soil β-glucosidase activity significantly decreased in response to biochar addition and climate manipulation, while urease activity was significantly increased by biochar, and protease activity was significantly decreased by climate manipulation. Gram negative and fungal biomasses were significantly affected by the interaction of biochar with climate manipulation. Climate manipulation produced changes in the composition of the soil fungal community without loss of diversity. This study illustrates how the interactions between biochar amendment and future climate change scenarios influence microbially-driven ecosystem services related to the maintenance of nutrient cycles and biodiversity in a Mediterranean agroecosystem.This research was financially supported by the Spanish MICINN MINECO, AEI, FEDER, EU), through the research projects CGL2015-65162-R and AGL2016-75752-R. The authors are also grateful for the AEPP CSIC funds (2020AEP004). We also thank the Spanish Ministry and FEDER funds for the project AGL2017–85755-R (AEI/FEDER, UE), the i-LINK + 2018 (LINKA20069) from CSIC

    Discovery of phloeophagus beetles as a source of pseudomonas strains that produce potentially new bioactive substances and description of pseudomonas bohemica sp. nov.

    No full text
    15 páginas, 6 tablas, 2 figuras. -- First publication is due to Frontiers MediaAntimicrobial resistance is a worldwide problem that threatens the effectiveness of treatments for microbial infection. Consequently, it is essential to study unexplored niches that can serve for the isolation of new microbial strains able to produce antimicrobial compounds to develop new drugs. Bark beetles live in phloem of host trees and establish symbioses with microorganisms that provide them with nutrients. In addition, some of their associated bacteria play a role in the beetle protection by producing substances that inhibit antagonists. In this study the capacity of several bacterial strains, isolated from the bark beetles Ips acuminatus, Pityophthorus pityographus Cryphalus piceae, and Pityogenes bidentatus, to produce antimicrobial compounds was analyzed. Several isolates exhibited the capacity to inhibit Gram-positive and Gram-negative bacteria, as well as fungi. The genome sequence analysis of three Pseudomonas isolates predicted the presence of several gene clusters implicated in the production of already described antimicrobials and moreover, the low similarity of some of these clusters with those previously described, suggests that they encode new undescribed substances, which may be useful for developing new antimicrobial agents. Moreover, these bacteria appear to have genetic machinery for producing antitumoral and antiviral substances. Finally, the strain IA19T showed to represent a new species of the genus Pseudomonas. The 16S rRNA gene sequence analysis showed that its most closely related species include Pseudomonas lutea, Pseudomonas graminis, Pseudomonas abietaniphila and Pseudomonas alkylphenolica, with 98.6, 98.5 98.4, and 98.4% identity, respectively. MLSA of the housekeeping genes gyrB, rpoB, and rpoD confirmed that strain IA19T clearly separates from its closest related species. Average nucleotide identity between strains IA19T and P. abietaniphila ATCC 700689T, P. graminis DSM 11363T, P. alkylphenolica KL28T and P. lutea DSM 17257T were 85.3, 80.2, 79.0, and 72.1%, respectively. Growth occurs at 4-37°C and pH 6.5-8. Optimal growth occurs at 28°C, pH 7–8 and up to 2.5% NaCl. Respiratory ubiquinones are Q9 (97%) and Q8 (3%). C16:0 and in summed feature 3 are the main fatty acids. Based on genotypic, phenotypic and chemotaxonomic characteristics, the description of Pseudomonas bohemica sp. nov. has been proposed. The type strain is IA19T (=CECT 9403T = LMG 30182T).This work was supported by the Czech Science Foundation (GACR) under the project number 16-15293Y.Peer reviewe
    corecore