116 research outputs found

    Modèle prédictif de l'apparition de la microporosité de retrait durant la solidification d'un alliage aluminium-silicium

    Get PDF
    Dans le système de freinage l’utilisation de pièces en alliage d’aluminium de fonderie est courante. Ce type de système nécessite une fiabilité des éléments qui se traduit par un besoin de maîtrise de la santé matière des produits. Le modèle proposé a pour but de prédire l’apparition de micro-défauts : les microporosités de retrait. Ceux-ci apparaissent lors de la solidification et diminuent la durée de vie des systèmes. Ce travail propose la modélisation de l’apparition de ces défauts lors dune solidification d’un alliage Aluminium Silicium. Cette contribution se démarque des travaux traitant des phénomènes liés à la variation de solubilité des gaz dans l’aluminium lors de la solidification. Ce travail sintéresse aux phénomènes de retrait dans le cas où il n’y a pas rupture d’alimentation. Le milieu semi-solide est considéré comme un milieu poreux. Lorsque la perméabilité de ce milieu est trop faible le retrait de solidification ne peut être compensé par déplacement de liquide. Ce modèle s’appuie sur un couplage entre la thermique de la solidification et le transfert de masse (écoulement interdendritique). Le modèle proposé utilise peu de paramètre. Ce caractère parcimonieux du modèle et l’incertitude sur la valeur de certains paramètres ont permis l’identification des dits paramètres. Ce travail d’identification par méthode inverse a nécessité des expérimentations, dans une configuration permettant de maîtriser les conditions aux limites.In a brake system, the foundry aluminium alloy is commonly used. This kind of system needs highly reliable elements. These elements involve having mastered material health of the components. The main goal of our model is to predict the apparition of micro defects: the shrinkage microporosity. They appear while solidification takes place and decrease systems lifetime. This work introduces a new model for defects apparition during a Aluminium-Silicium Alloy solidification. Our contribution differentiates from gas solubility variation studies in aluminium while solidification, as it deals with shrinkage phenomenon when there is no supplying rupture. The semi liquid medium is considered as a porous environment. When permeability is too low, shrinkage solidification cannot be compensated by the liquid displacement. This model is built using both thermal solidification and mass transfer (interdentritic mass flow). Our model is economic parameters-wise. This parsimony and the uncertainty of some parameters have allowed the identification of those special parameters. This inverse method identification work has required special experimentations, where boundary conditions had to be controlled

    Multi-dimensional computational pipeline for large-scale deep screening of compound effect assessment: an in silico case study on ageing-related compounds

    Get PDF
    Designing alternative approaches to efficiently screen chemicals on the efficacy landscape is a challenging yet indispensable task in the current compound profiling methods. Particularly, increasing regulatory restrictions underscore the need to develop advanced computational pipelines for efficacy assessment of chemical compounds as alternative means to reduce and/or replace in vivo experiments. Here, we present an innovative computational pipeline for large-scale assessment of chemical compounds by analysing and clustering chemical compounds on the basis of multiple dimensions—structural similarity, binding profiles and their network effects across pathways and molecular interaction maps—to generate testable hypotheses on the pharmacological landscapes as well as identify potential mechanisms of efficacy on phenomenological processes. Further, we elucidate the application of the pipeline on a screen of anti-ageing-related compounds to cluster the candidates based on their structure, docking profile and network effects on fundamental metabolic/molecular pathways associated with the cell vitality, highlighting emergent insights on compounds activities based on the multi-dimensional deep screen pipeline

    Combined Use of Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses Is a Powerful Diagnostic Tool of Active Tuberculosis.

    Get PDF
    Immune-based assays are promising tools to help to formulate diagnosis of active tuberculosis. A multiparameter flow cytometry assay assessing T-cell responses specific to Mycobacterium tuberculosis and the combination of both CD4 and CD8 T-cell responses accurately discriminated between active tuberculosis and latent infection

    Antigen-Specific T-Cell Activation Distinguishes between Recent and Remote Tuberculosis Infection

    Get PDF
    Rationale: Current diagnostic tests fail to identify individuals at higher risk of progression to tuberculosis disease, such as those with recent Mycobacterium tuberculosis infection, who should be prioritized for targeted preventive treatment. Objectives: To define a blood-based biomarker, measured with a simple flow cytometry assay, that can stratify different stages of tuberculosis infection to infer risk of disease. Methods: South African adolescents were serially tested with QuantiFERON-TB Gold to define recent (QuantiFERON-TB conversion 1 yr) infection. We defined the ΔHLA-DR median fluorescence intensity biomarker as the difference in HLA-DR expression between IFN-γ+ TNF+ Mycobacterium tuberculosis-specific T cells and total CD3+ T cells. Biomarker performance was assessed by blinded prediction in untouched test cohorts with recent versus persistent infection or tuberculosis disease and by unblinded analysis of asymptomatic adolescents with tuberculosis infection who remained healthy (nonprogressors) or who progressed to microbiologically confirmed disease (progressors). Measurements and Main Results: In the test cohorts, frequencies of Mycobacterium tuberculosis-specific T cells differentiated between QuantiFERON-TB- (n = 25) and QuantiFERON-TB+ (n = 47) individuals (area under the receiver operating characteristic curve, 0.94; 95% confidence interval, 0.87-1.00). ΔHLA-DR significantly discriminated between recent (n = 20) and persistent (n = 22) QuantiFERON-TB+ (0.91; 0.83-1.00); persistent QuantiFERON-TB+ and newly diagnosed tuberculosis (n = 19; 0.99; 0.96-1.00); and tuberculosis progressors (n = 22) and nonprogressors (n = 34; 0.75; 0.63-0.87). However, ΔHLA-DR median fluorescent intensity could not discriminate between recent QuantiFERON-TB+ and tuberculosis (0.67; 0.50-0.84). Conclusions: The ΔHLA-DR biomarker can identify individuals with recent QuantiFERON-TB conversion and those with disease progression, allowing targeted provision of preventive treatment to those at highest risk of tuberculosis. Further validation studies of this novel immune biomarker in various settings and populations at risk are warranted

    Combined Use of Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses Is a Powerful Diagnostic Tool of Active Tuberculosis

    Get PDF
    Immune-based assays are promising tools to help to formulate diagnosis of active tuberculosis. A multiparameter flow cytometry assay assessing T-cell responses specific to Mycobacterium tuberculosis and the combination of both CD4 and CD8 T-cell responses accurately discriminated between active tuberculosis and latent infectio

    T cell receptor repertoires associated with control and disease progression following Mycobacterium tuberculosis infection

    Get PDF
    Antigen-specific, MHC-restricted αβ T cells are necessary for protective immunity against Mycobacterium tuberculosis, but the ability to broadly study these responses has been limited. In the present study, we used single-cell and bulk T cell receptor (TCR) sequencing and the GLIPH2 algorithm to analyze M. tuberculosis-specific sequences in two longitudinal cohorts, comprising 166 individuals with M. tuberculosis infection who progressed to either tuberculosis (n = 48) or controlled infection (n = 118). We found 24 T cell groups with similar TCR-β sequences, predicted by GLIPH2 to have common TCR specificities, which were associated with control of infection (n = 17), and others that were associated with progression to disease (n = 7). Using a genome-wide M. tuberculosis antigen screen, we identified peptides targeted by T cell similarity groups enriched either in controllers or in progressors. We propose that antigens recognized by T cell similarity groups associated with control of infection can be considered as high-priority targets for future vaccine development

    Multidimensional analyses reveal modulation of adaptive and innate immune subsets by tuberculosis vaccines

    Get PDF
    We characterize the breadth, function and phenotype of innate and adaptive cellular responses in a prevention of Mycobacterium tuberculosis infection trial. Responses are measured by whole blood intracellular cytokine staining at baseline and 70 days after vaccination with H4:IC31 (subunit vaccine containing Ag85B and TB10.4), Bacille Calmette-Guerin (BCG, a live attenuated vaccine) or placebo (n = ~30 per group). H4:IC31 vaccination induces Ag85B and TB10.4-specific CD4 T cells, and an unexpected NKTlike subset, that expresses IFN-γ, TNF and/or IL-2. BCG revaccination increases frequencies of CD4 T cell subsets that either express Th1 cytokines or IL-22, and modestly increases IFNγ-producing NK cells. In vitro BCG re-stimulation also triggers responses by donor-unrestricted T cells, which may contribute to host responses against mycobacteria. BCG, which demonstrated efficacy against sustained Mycobacterium tuberculosis infection, modulates multiple immune cell subsets, in particular conventional Th1 and Th22 cells, which should be investigated in discovery studies of correlates of protection

    Importance of Salmonella Typhi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model

    Get PDF
    Typhoid fever, caused by the human-restricted organism Salmonella enterica serovar Typhi (S. Typhi), constitutes a major global health problem. The development of improved attenuated vaccines is pressing, but delayed by the lack of appropriate preclinical models. Herein, we report that high levels of S. Typhi-responsive CD8+ T cells at baseline significantly correlate with an increased risk of disease in humans challenged with a high dose (~104 CFU) wild-type S. Typhi. Typhoid fever development was associated with higher multifunctional S. Typhi-responsive CD8+ T effector memory cells at baseline. Early decreases of these cells in circulation following challenge were observed in both S. Typhi-responsive integrin α4β7− and integrin α4β7+ CD8+ T effector memory (TEM) cells, suggesting their potential to home to both mucosal and extra-intestinal sites. Participants with higher baseline levels of S. Typhi-responsive CD8+ T memory cells had a higher risk of acquiring disease, but among those who acquired disease, those with a higher baseline responses took longer to develop disease. In contrast, protection against disease was associated with low or absent S. Typhi-responsive T cells at baseline and no changes in circulation following challenge. These data highlight the importance of pre-existing S. Typhi-responsive immunity in predicting clinical outcome following infection with wild-type S. Typhi and provide novel insights into the complex mechanisms involved in protective immunity to natural infection in a stringent human model with a high challenge dose. They also contribute important information on the immunological responses to be assessed in the appraisal and selection of new generation typhoid vaccines

    Comparison of CyTOF assays across sites: Results of a six-center pilot study.

    Get PDF
    For more than five years, high-dimensional mass cytometry has been employed to study immunology. However, these studies have typically been performed in one laboratory on one or few instruments. We present the results of a six-center study using healthy control human peripheral blood mononuclear cells (PBMCs) and commercially available reagents to test the intra-site and inter-site variation of mass cytometers and operators. We used prestained controls generated by the primary center as a reference to compare against samples stained at each individual center. Data were analyzed at the primary center, including investigating the effects of two normalization methods. All six sites performed similarly, with CVs for both Frequency of Parent and median signal intensity (MSI) values<30%. Increased background was seen when using the premixed antibody cocktail aliquots at each site, suggesting that cocktails are best made fresh. Both normalization methods tested performed adequately for normalizing MSI values between centers. Clustering algorithms revealed slight differences between the prestained and the sites-stained samples, due mostly to the increased background of a few antibodies. Therefore, we believe that multicenter mass cytometry assays are feasible
    corecore