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ARTICLE OPEN

Multi-dimensional computational pipeline for large-scale deep
screening of compound effect assessment: an in silico case
study on ageing-related compounds
Vipul Gupta1, Alina Crudu2, Yukiko Matsuoka 1, Samik Ghosh1, Roger Rozot2, Xavier Marat2, Sibylle Jäger2, Hiroaki Kitano1,3* and
Lionel Breton2*

Designing alternative approaches to efficiently screen chemicals on the efficacy landscape is a challenging yet indispensable task in
the current compound profiling methods. Particularly, increasing regulatory restrictions underscore the need to develop advanced
computational pipelines for efficacy assessment of chemical compounds as alternative means to reduce and/or replace in vivo
experiments. Here, we present an innovative computational pipeline for large-scale assessment of chemical compounds by
analysing and clustering chemical compounds on the basis of multiple dimensions—structural similarity, binding profiles and their
network effects across pathways and molecular interaction maps—to generate testable hypotheses on the pharmacological
landscapes as well as identify potential mechanisms of efficacy on phenomenological processes. Further, we elucidate the
application of the pipeline on a screen of anti-ageing-related compounds to cluster the candidates based on their structure,
docking profile and network effects on fundamental metabolic/molecular pathways associated with the cell vitality, highlighting
emergent insights on compounds activities based on the multi-dimensional deep screen pipeline.
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INTRODUCTION
Developing cutting-edge methodologies for assessing and opti-
mising the efficacy of chemical compounds is a challenge for
developing a 21st-century paradigm in compound screening.
While the conceptual framework of 20th-century assessment
studies was dominated by animal experiments, recent develop-
ments in experimental and computational techniques provide
alternative opportunities to gain a systems-level understanding of
the underlying biology driving the effects of chemicals on
humans.1–3 Particularly, the ability to study the precise effect of
chemical compounds on specific molecular entities plays a crucial
role in understanding their toxicological and efficacy
landscapes.4,5

Systems-oriented, network pharmacology-based approaches
combining multiple dimensions of the compound structure,
functions and molecular networks, unravel a unique opportunity
for developing computational pipelines that provide the capability
to “deep screen” compounds on different axes of biology to
obtain mechanistic insights into their effects.
Recent advancements in in silico techniques, such as structural

biology, molecular docking, molecular pathway building and
computational chemistry, supply the community with sophisti-
cated tools for predicting the effect of protein–drug interaction at
phenotypic level.6–8 Further, advancements in the field of
protein–protein interaction, pathway analysis and literature-
mining allow large-scale-free networks to assist the decision
making based on the valuable information about biological
perturbation generated from these sources.5,8–13 Each of the
above approaches provides a specific perspective to look for
relationships within biological processes. However, the complexity
of the molecular interactions at the cellular level and the potential
for collateral interactions entail the development of

methodologies that can connect the different perspectives and
obtain deeper, emergent insights into the compound effect
landscape.14

For example, while state-of-the-art docking tools provide
simulation results for potential binding scores of compounds to
known targets or proteins, each tool has its unique advantages
and drawbacks. To obtain a high-precision score, it is crucial to
building a computational framework that can leverage the
advantages of specific tools, while reconciling their inherent
limitations, as demonstrated by the systemsDock system for
network pharmacology-based prediction and analysis of mole-
cules.15,16 Further, to comprehend the impact of the docking of
compounds to targets, it is important to study their effects
holistically, at the level of molecular interactions rather than
individual targets. Such system level studies can provide more
profound insights into the potential mode of action (MOA) of
specific compounds and identify network effects on safety and
efficacy.
In this framework, the article proposes an innovative computa-

tional pipeline for large-scale assessment of chemical compounds
to generate testable hypotheses on the pharmacological land-
scapes as well as new mechanisms of efficacy on phenomen-
ological processes. Specifically, it analyses and clusters chemical
compounds based on multiple dimensions—structural similarity,
binding profiles and, more importantly, their network effects
across pathways and molecular interaction maps. Further, to
demonstrate the ability of the pipeline to obtain deeper,
mechanistic insights into compound effects, we apply the pipeline
on a screen of compounds to cluster the candidates based on
their structure, docking profile and network effects on funda-
mental signalling/metabolic pathways associated with metabolic
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and cellular stress, damage and/or other factors that directly or
indirectly affect the cell vitality.
In the next section, we provide a detailed outline of the

pipeline, followed by discussions on the application of the
pipeline featuring a case study for screening chemicals on
important molecular/metabolic pathways for cell vitality and
conclude with discussions on the challenges and opportunities of
building deep screening pipelines for compound assessment.

RESULTS
Overview: network-based compound screening pipeline
This section outlines the new network-based screening pipeline as
illustrated in Fig. 1 and Box 1, along with the detailed
methodology in each step of the pipeline. We systematically
elucidate each step of the pipeline, highlighting the inputs and
outputs and associated analysis of the computational flow.

1. Input test compounds. A list of test compounds and associated
structure files in “sdf” or mol or SMILES format are used as input to
the pipeline.

2. Structure-similarity-based compound clustering. To determine
the landscape of the compound structures, a structure-similarity
analysis is performed using a flexible maximum common

substructure (FMCS) algorithm. The FMCS algorithm is an
improved version of maximum common substructure (MCS)
search method that allows small mismatches during the structure
comparison.17 This has an advantage over MCS, as it results in the
identification of more common substructure and provided higher
sensitivity.17 The FMCS algorithm is also efficient at identifying
local structural similarities between chemicals with significant
differences in molecule size. Similarities between compounds are
measured as Overlap coefficient defined as n/min(c1,c2) where n
is the number of atoms in the MCS, c1 and c2 are number of
atoms in the input compounds.18 The pipeline computes an
overlap coefficient matrix for all input compounds and performs
clustering of compounds using “pvclust” function and correlation-
based dissimilarity matrix as available in R package.19 R function
“pvclust” performs hierarchical cluster analysis by calculating AU
(Approximately Unbiased) p-value using multiscale bootstrap
resampling.19 Finally, the pipeline generates a structure-similarity
dendrogram plot for visualisation.

3. Protein input data preparation. Another input for the pipeline
is a list of proteins related to a target biological phenomenon. Our
pipeline is designed to provide the user with the flexibility to input
either a list of proteins or whole pathway maps, associated with
the biological phenomenon. The protein list can be obtained by
using the following, non-exhaustive list of options: (1) genes/

Fig. 1 Flowchart representing the basic workflow of network-based compound screening pipeline. Each of the steps described in the text is
marked in black circles. Input/output, process and start/end are described by proper flowchart symbols.
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proteins identified in omics data analysis, (2) biomedical literature
curation or (3) pathway curation. In this study, as we focus on
finding chemicals with similar effects on cell vitality, we built a
molecular mechanistic pathway map of its associated relevant
molecular/metabolic pathways by literature curation, then identi-
fied the list of proteins for compounds screening as described in
the case-study section of this manuscript.

4. Machine-learning-based docking simulation. After preparing
the input proteins and compound list, the pipeline performs
docking simulation to generate docking scores for each set of
protein–compound pairs in the input using systemsDock web-
service.16 systemsDock rapidly and efficiently calculates the
binding potential of a small molecule, such as a drug or candidate
molecule, to a set of target proteins. It takes advantage of the
multiple docking tools and uses their outputs to train a machine-
learning model to obtain accurate prediction scores for the
docking simulations. Its ability to integrate and learn from multiple
state-of-the-art algorithms allows the system to predict at high-
precision accuracy compared to the individual docking simulation
systems both commercial (GOLD,20 eHiTs21) and academic-free
versions (Vina22). Benchmark validation studies on systemsDock
have demonstrated its ability to predict, with high accuracy, the
primary targets of kinase inhibitors when compared to other off-
the-shelf techniques.15

Both compound(s) structure file and protein-list/pathway maps
are uploaded to the systemsDock server. For each of the target
proteins in the list or pathway map, systemsDock automatically
searches for the available tertiary structures in RCSB protein data
bank23 and then retrieves the best resolution structure using a
local synced copy of RCSB PDB database.16 Next, the binding site,
if any, is assigned to the most prominent native ligand in the co-
crystallised complex structure. Notably, this is a critical step in the
pipeline where each assigned binding site is manually checked, as
sometimes the protein structures might contain glycerol or
detergent or some other kind of crystallography artifacts. Because
of ligand like properties, these might also be assigned as the
binding site that eventually will lead to false positive results. Thus,
to maintain the quality of the analysis, binding site was assigned

after manually checking each protein structure. Finally, docking is
performed on systemsDock server that generates docking score in
the range 0–10, representing the negative logarithm of the
experimental dissociation/association constant (pKd/pKi), by eval-
uating single best most reliable binding pose between each
protein–compound pair as described previously.15,16

5. Docking Score-based compound clustering. Next, the docking
scores computed for each of the compound–protein pairs are
downloaded from the server and are transformed in the form of a
docking-score matrix. To further comprehend the similarities/
differences in the docking profile between compounds, the
pipeline performs docking score-based hierarchical clustering of
compounds using the docking score matrix and generates a
dendrogram plot for visualisation, as described in step 2.

6. Docking score rank normalisation. Docking score is generally
biased by the additive nature of enthalpic effects associated with
increasing compound size.24 As the current pipeline aims to
screen a diverse set of chemicals for their overall network-level
effects, it is important to normalise the docking scores to
efficiently capture the unbiased effect of compound-protein
interaction over the network. Docking scores generated in the
previous step are normalised using rank() function in R by
replacing docking scores with a rank in descending order starting
with 1 for the highest docking score for a compound against all
proteins. Rank ties were solved by computing and assigning the
average rank (Box 1). While the technique has been applied
previously to microarray datasets to reduce the technological
noises,25–27 here it is used to generate a docking profile of
compound against all proteins for subsequent analysis.

7. Protein–protein interaction (PPI) network construction. While
molecular interaction pathways provide a potential molecular
mechanistic interaction for the constituents, their coverage can be
limited by the knowledge of biochemical interactions. Large-scale
PPI maps provide a basic abstraction of larger complex pathways
that control the major cellular and molecular machinery
determining the disease or healthy state of an organism. Hub

Box 1 Flow diagram to compute PPI network-effect in compound screening pipeline
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protein nodes with higher degree of interactions in the PPI
network represent the key targets drugging which, leads to a
substantial effect on the cellular machinery. While docking
provides an insight into the chemical-protein interactions, PPI
network was used to compute the importance of each protein
target used for docking in the previous step. In this pipeline, PPI
network was generated from the STRING (http://string-db.org/)
database28 that provides known PPI curated from published
sources such as high-throughput experiments, co-expression,
genomics and literature search. The initial list of target proteins
used for docking is used as input in the STRING database to
generate a PPI network for human isoforms with a high
confidence score of 0.7.28 In STRING, confidence scores are used
to establish the probability of interaction between two proteins
based on the authenticity of the source of interaction.

8. Network topology analysis. Using the NetworkAnalyzer func-
tion in Cytoscape,29 the network specific parameters, such as node
degrees, betweenness, etc. that specify the dynamics of a
network, are calculated. In this pipeline, we used node degree
parameter that represents the number of connections that each
node (protein) makes with other nodes (proteins) in the PPI
network.

9. Network-effect based compound clustering. To capture the
network level effect of compound docking on PPIs, the analysis is
focused on key network parameter like degree (i.e., number of
interactions for a specific protein or molecular entity). Rank
normalised docking score for each target protein is multiplied by
its node degree parameter, amplifying the effect of compound
binding. Finally, compounds are clustered using hierarchical
clustering and a dendrogram is generated for visual inspection,
as described in step 2.
The pipeline provides multiple clustering outputs [structural-,

docking- and network-based clustering] with progressively deeper
dimensions of the biology being integrated into the various steps
of the pipeline, thereby providing a comparative view of the
compound effect as captured by the pipeline. The intermediate
outputs, structural- and docking-based clusters, provide an
overview of chemical similarities and interaction landscapes but
fail to capture the effect of these interactions at the phenomenon
level. In contrast, the final output, network-effect based clustering
elucidates the effects of each chemical beyond the dimensions of
structure or target binding affinity at the phenotypic level.
In the next section, we provide a more detailed analysis of the

comparative clustering results for the specific use case on anti-
ageing-related compounds. It is pertinent to mention here that,
while the current pipeline is customised to provide clustering
outputs, the overall computational framework can also provide
rank-order of compounds for use cases involving prioritisation of
candidates for application in drug discovery phases.

Case study: application of the pipeline on an ageing-related
compound screening
To assess the performance of the pipeline, we present the case
study on an ageing-related compound screen that analyses and
clusters the candidate compounds based on their multi-
dimensional effects on indispensable metabolic and molecular
pathways associated with cell vitality. Deterioration of these
pathways results in the dysregulation of the molecular machinery
that contributes to the progressive time-dependent loss in cellular
and tissue integrity, which characterises fundamental biological
phenomena such as ageing.30–39 Designing interventions that can
revert the effect of perturbations in these pathways will
significantly benefit researchers in identifying new agents for
healthy ageing and reduce healthcare expenses. Several studies
that have used different strategies to identify compounds with

potential anti-ageing properties.40–42 However, to our current
knowledge, there are no studies that have built a comprehensive
molecular mechanistic pathway map of cell vitality-associated
pathways and used it as a base for clustering compounds.
We outline the inputs and the processes associated with the

pipeline, specifically highlighting the role of the multi-dimensional
pipeline in identifying deeper insights into the effect of the
compounds (rapamycin and vitamin C in one case and retinol and
retinoic acid in another).

The input to the pipeline
Test compounds. Twelve chemical compounds with different
molecular weights, physico-chemical properties and known or
unknown mechanisms of action were selected (Fig. 2, Supple-
mentary Table S1) for a proof of concept study. Several
compounds in the list, such as vitamin C, retinol, retinoic acid,
resveratrol, LR2412/JAD, c-xyloside (ProxylaneTM) were reported to
affect skin ageing parameters.43–51 Rapamycin, metformin, resver-
atrol, C8-SA, acetyl salicylic acid, salicylic acid have also been
described as longevity compounds in model organisms.42,50,52–61

Constructing pathway map. To build a molecular mechanistic
map of cell vitality-associated pathways, we collected literature
(published articles, reviews; compiled in Supplementary Table S2)
available in public domain. This information was used to manually
curate and build the map with CellDesigner 4.3.62,63 A score of
proteins was mapped from relevant published data to capture the
important pathways associated with maintaining cell viability (Fig.
3a). Precisely, a potential set of proteins include key components
around fundamental signalling and metabolic pathways (energy
balance, metabolism, mitochondria, oxidative stress-related mole-
cules—FOXO3, AMPK, NRF2, mTOR, PGC-1alpha, PDE4, etc.).64–71

The map includes a total of 179 species connected by 214
reactions. Under species, there are 116 proteins, 11 complex and
20 simple molecules. Nine different signals (stimuli) are repre-
sented in the maps including genomic stress, low energy, hypoxia,
growth factor, inflammation, caloric restriction and prostaglandin
pathway. All proteins were mapped in a top-to-bottom approach
where the top part represents the signalling and the bottom
represents the downstream effects. Also, based on the literature
search, 19 different downstream effects that are related to cellular
integrity and vitality have been mapped (Fig. 3a).30,32,72–77

PPI network. Next, a PPI network for the proteins that are part of
the above pathway map was built using STRING database (Fig. 3b;
Supplementary Table S3 sheet “Pathway Map Protein”). The PPI
network contains 106 protein nodes and 759 connections
(Supplementary Table S3 sheet “PPI network”). A network
topology parameter, node degree was generated for the PPI
network (Supplementary Table S3 sheet “PPI Degree”) and
included in network-based compound clustering step.

Outputs from the pipeline
Structure-similarity-based compound clustering. To understand
the difference in structural landscape and identify chemically
more meaningful information on compound similarity, a structure-
similarity analysis was performed using FMCS algorithm integrated
into R,17 and visualised using dendrogram (Fig. 4a). All compounds
except metformin formed a large group of structurally similar
isolates. As expected, structurally similar compounds such as
retinoic acid and retinol, C8-SA and C12-SA are clustered together.
Interestingly, C-xyloside and rapamycin that differ significantly in
size were also paired together. After careful analysis, we found
that rapamycin contains a small signature of C-xyloside in its huge
structure (Supplementary Figure S1). We further tested the
Morgan or Extended Connectivity fingerprints (ECFPs) that
represent a molecular structure using topological atom
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neighbourhoods. The clustering results obtained using ECFPs are
similar to the FMCS based clustering results (Fig. 4a and
Supplementary Figure S2). Surprisingly, other conventional
methods such as MACCS-based fingerprints failed to identify
these significant similarities between these two compounds (data
not shown).

Docking-score based compound clustering. Out of 116 proteins
present in the pathway map, structure for 45 proteins (~40%) with
a resolution less than 3 angstroms and a well-defined binding
pocket could be identified (Table 1). Docking was performed using
systemsDock and docking scores were generated for selected 45
proteins against all test compounds (Supplementary Table S4
sheet “Docking Score”). Test compounds were clustered over
docking score and visualised by dendrogram (Fig. 4b).

Network-effect based compound clustering. To infer the network
level effects of molecular docking on compound clustering, the
generated docking scores were first rank normalised as explained

in the methods section (Supplementary Table S4 sheet “Rank
Normalisation”). Next, network topology parameter, node degree,
calculated from PPI network (Table 1) was multiplied with the
rank-normalised docking score (Box 1; Supplementary Table S4
sheet “Network-effect”). Eventually, compounds were clustered
and visualised using dendrogram (Fig. 4c). Interestingly, with the
addition of network dimension to the docking score-based
compound clustering (Fig. 4c), a distinct difference to the
structure-based and docking score-based clustering is observed
(Figs 4a, b), further explained in next section.

Emerging Insights on compounds based on the multi-dimensional
deep screening pipeline
To highlight the impact using network-based compound cluster-
ing over similarity-based or docking-score based clustering, we
present case studies for two pairs of compounds (1) rapamycin
and vitamin C (ascorbic acid) and (2) retinol and retinoic acid.

Fig. 2 Twelve test compounds with different sizes and properties are used in the case study of network-based compound screening pipeline.
Some of the compounds are known to have significant anti-ageing properties.
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A

B

Fig. 3 Construction of pathway map and PPI interaction map. a Molecular mechanistic pathway map of signalling and metabolic pathways
associated with cell vitality were manually curated and constructed on CellDesigner 4.3. The map includes all the important species (protein,
complexes, metabolite, DNA, RNA) and cellular compartments (such as mitochondria, nucleus and ER). b Protein–protein interaction (PPI)
network was generated using STRING database for the proteins in the pathway map. The current visualisation was generated using Cytoscape,
with larger node representing high degree and vice versa. Similarly, low to high betweenness centrality of the node in the PPI network was
highlighted between green–yellow–red.
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Rapamycin and vitamin C. As shown in Fig. 2, both rapamycin
and vitamin C have a different structure and size (Figs. 2 and 4a).
Also, based on the docking scores they are clustered in different
groups (Fig. 4b). However, after including the network parameter
in the clustering algorithm, we could see that both rapamycin and
vitamin C show similar network-level effects and are clustered
together (Fig. 4c). It is worth noting that a distinct set of proteins
associated with caloric restriction such as ADYCA, CAMKK2 and
PDK1 were similarly affected by these two compounds. It is
pertinent to note that the possibility of having a similar effect on a
subset of cell-vitality-associated pathways was hypothesised
based on the network-based clustering pipeline, although based
on the docking score, these compounds can be inferred to have
completely different structure and different MOA. The potential
similarity between rapamycin and vitamin C at the network level
provide testable hypotheses, which need to be investigated both
at the mechanism level and in experimental assays. Although the
biological interpretation of the results is beyond the scope of this
study, rapamycin and vitamin C have been described as longevity
drugs albeit different mechanisms seem to be involved.52,78,79

Retinoic acid and retinol. Retinoic acid and retinol are highly
similar structurally (Figs 2 and 4a) and are grouped based on the
docking scores (Fig. 4b). However, they were clustered in separate
bins over network (Fig. 4c), suggesting a different mechanism of
action for these two compounds. Interestingly, some studies have
reported the differential effects of retinol and retinoic acid in
human cells,50,80–82 thus further strengthening the impact of
network-based compound screening pipeline.
The two examples analysed before show that we need to take

into account all the information revealed by the different
clustering methods. Thus, molecules with structural similarities
could trigger different mechanism and this information is essential
for the decision making process. In particular, it could allow
identifying beneficial compound combinations that are not
revealed by structural similarity or docking scores. For example,
the combination of C-xyloside and vitamin C might have a broader
effect on cell vitality and skin ageing parameters than the single
compounds separately. Even though these two compounds are
clustered together based on the docking scores, they cluster in
separate bins at the network clustering level.

DISCUSSIONS
Here we introduce an original and innovative computational
pipeline for compound assessment combining multiple dimen-
sions of compound structure and docking profile to obtain

deeper, emergent insights into the compound effect landscape.
Further, to demonstrate the usability of the pipeline, we
constructed a deep-curated, literature-driven molecular-level,
mechanistic map for signalling and metabolic pathways asso-
ciated with cell vitality, identifying and characterising the potential
targets and proteins in the map. We further extended the pathway
map to build a PPI network to capture the overall effects of the
compounds. Using the protein targets identified by these specific
pathways and networks, and applying the systemsDock15,16

framework to compute binding profiles for the compound list,
the compounds were clustered on three dimensions—structure-
similarity, binding profile and network effect. Comparative analysis
of the clustering dimensions revealed the ability of our pipeline to
identify new clusters of compounds that differ in structure or
binding profile but may potentially have similar effect signature at
the network level (rapamycin and vitamin C for example).
Structure-similarity is a well-known method to identify com-

pounds with similar structures; however, the method is less robust
in identifying biologically meaningful similarities as it lacks the
information associated with compounds’ chemical properties or
molecular interactions. By contrast, docking-score based clustering
captures the molecular-level interactions between compounds
and target proteins, but it does not capture the holistic effect of
compound over a biological phenomenon as the technique is
strictly limited by the availability of protein tertiary structure.
Network-effect based compound clustering overcomes these

limitations of the former two approaches by (1) rank normalisation
of docking score generating a comparable docking profile for each
test compound and (2) combining PPI network topology with
docking rank to indirectly incorporate the effects of proteins with
no available tertiary structures. Both these features of network-
guided clustering group compounds with similar holistic effect
over a biological phenotype. At the same time, the differences in
clustering between the docking-score and the PPI network for
some compounds highlight the sensitivity of the clustering results
to the network topology.
While the current pipeline elucidates the network-level effects

of compound-protein interaction, the extent of phenotypical
effects captured is dependent on the existing knowledge. The PPI
network captures all possible interactions among proteins;
however, it is possible that some of the interactions are not
relevant for cell vitality thus changing the network effects on the
compound clustering. Similarly, the coverage of the manually
curated pathway map may miss specific interactions and thus bias
the clustering results. Furthermore, these functional PPI networks
provide only a qualitative measure of protein functionality within
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Fig. 4 Compound clustering dendrograms for (a) structural-similarity, (b) docking-score and (c) network-effect.
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the network and do not infer on the abundance of each protein in
the cell.
Therefore, the flexibility to modify, enhance and customise the

pipeline is an important characteristic of building next-generation
computational pipelines which can provide deep screening of

compounds on multiple dimensions. For example in the future
version of the pipeline, we plan to integrate publicly available
protein tertiary structure prediction tools to predict the tertiary
structure for proteins for which no PDB structures are available in
the databases. Our current pipeline highlights the importance of
multi-dimensional screen in capturing emergent properties of
compounds which may not be apparent from a single-
dimensional analysis using, for example, a high-throughput
docking profile screen. At the same time, defining the boundaries
of the dimensions in the pipeline, depending on data availability,
focus areas of the compound effects and existing knowledge of
the underlying biology, are some of the key issues in leveraging
such pipelines. With the increasing availability of multi-omics data,
the pipeline can be enhanced with powerful machine learning
(including deep learning) techniques to identify unique features
across the different datasets. This can further add value to the
pipeline and its potential to enable deep screening of compound
assessment across multiple domains.

METHODS
All methods associated with this study are part of the Results section.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The authors declare that all data supporting the findings of this study are available
within the paper [and its supplementary information files].
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