52 research outputs found

    Kinetic Analysis of Some Chalcones and Synthetic Chalcone Analogues on the Fenton-Reaction Initiated Deoxyribose Degradation Assay1

    Get PDF
    Investigation of in vitro hydroxyl radical scavenging (antioxidant) effect 4-methoxychalcone (1a) and its cyclic analogues (2a-4a), as well as their hydroxyl substituted counterparts (1b-4b) was performed by means of the Fenton-reaction initiated deoxyribose degradation assay in short term (10 minute) and long term (240 minute) experiments. The kinetic deoxyribose method provides possibility to investigate not only the short term antioxidant (hydroxyl radical scavenger) effect but the possible late prooxidant effect of the tested substances as well. In the short term studies compounds 2a, 2b and 4b showed the most pronounced antioxidant effect. The long-term studies showed that the antioxidant activity of all the tested compounds but 4a can be well characterized by the short time determination of the thiobarbituric acid (TBA)-reactive substances (TBARS). Experiments in the presence of ethylenediaminetetraacetic acid (EDTA) resulted in a substantially reduced degradation of deoxyribose in each incubation. Similar to the respective experiment performed without EDTA, the TBARS level of the incubations with 4a showed an increase over the 60-120 minute period. The results demonstrated that complex forming activities that can modify microspeciation and reactivity of iron ions can lead to different short term antioxidant efficiency of the tested substances. Results of the long term incubations indicated that chemical transformation of the tested substances can result formation of derivatives that can initiate further redox activities under the experimental conditions

    Hemokinin-1 is a mediator of chronic restraint stress-induced pain

    Get PDF
    The Tac4 gene-derived hemokinin-1 (HK-1) binds to the NK1 receptor, similarly to Substance P, and plays a role in acute stress reactions and pain transmission in mice. Here we investigated Tac4 mRNA expression in stress and pain-related regions and its involvement in chronic restraint stress-evoked behavioral changes and pain using Tac4 gene-deleted (Tac4-/-) mice compared to C57Bl/6 wildtypes (WT). Tac4 mRNA was detected by in situ hybridization RNAscope technique. Touch sensitivity was assessed by esthesiometry, cold tolerance by paw withdrawal latency from 0°C water. Anxiety was evaluated in the light-dark box (LDB) and open field test (OFT), depression-like behavior in the tail suspension test (TST). Adrenal and thymus weights were measured at the end of the experiment. We found abundant Tac4 expression in the hypothalamic-pituitary-adrenal axis, but Tac4 mRNA was also detected in the hippocampus, amygdala, somatosensory and piriform cortices in mice, and in the frontal regions and the amygdala in humans. In Tac4-/- mice of both sexes, stress-induced mechanical, but not cold hyperalgesia was significantly decreased compared to WTs. Stress-induced behavioral alterations were mild or absent in male WT animals, while significant changes of these parameters could be detected in females. Thymus weight decrease can be observed in both sexes. Higher baseline anxiety and depression-like behaviors were detected in male but not in female HK-1-deficient mice, highlighting the importance of investigating both sexes in preclinical studies. We provided the first evidence for the potent nociceptive and stress regulating effects of HK-1 in chronic restraint stress paradigm. Identification of its targets might open new perspectives for therapy of stress-induced pain

    Novel cyclic C5-curcuminoids penetrating the blood-brain barrier: design, synthesis and antiproliferative activity against astrocytoma and neuroblastoma cells

    Get PDF
    Novel series of cyclic C5-curcuminoids 17a-j and 19-22 were prepared as cytotoxic agents and evaluated against human neuroblastoma (SH-SY5Y) or human grade IV astrocytoma (CCF-STTG1) cell lines in low (∼0.1 nM - 10 nM) concentrations. Among the tested 21 derivatives, 16 displayed potent antiproliferative activity with IC50 values in the low nanomolar to picomolar range (IC50 = 7.483-0.139 nM). Highly active compounds like N-monocarboxylic derivative 19b with IC50 = 0.139 nM value against neuroblastoma and N-alkyl substituted 11 with IC50 = 0.257 nM against astrocytoma proved some degree of selectivity toward non-cancerous astrocytes and kidney cells. This potent anticancer activity did not show a strong correlation with experimental logPTLC values, but the most potent antiproliferative molecules 11-13 and 19-22 are belonging to discrete subgroups of the cyclic C5-curcuminoids. Compounds 12, 17c and 19b were subjected to blood-brain barrier (BBB) penetration studies, too. The BBB was revealed to be permeable for all of them but, as the apparent permeability coefficient (Papp) values mirrored, in different ratios. Lower toxicity of 12, 17c and 19b was observed toward primary rat brain endothelial cells of the BBB model, which means they remained undamaged under 10 µM concentrations. Penetration depends, at least in part, on albumin binding of 12, 17c and 19b and the presence of monocarboxylic acid transporters in the case of 19b. Permeation through the BBB and albumin binding, we described here, is the first example of cyclic C5-curcuminoids as to our knowledge

    Metabolic engineering of <i>Saccharomyces cerevisiae</i> for <i>de novo</i> production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties

    Get PDF
    Dihydrochalcones are plant secondary metabolites comprising molecules of significant commercial interest as antioxidants, antidiabetics, or sweeteners. To date, their heterologous biosynthesis in microorganisms has been achieved only by precursor feeding or as minor by-products in strains engineered for flavonoid production. Here, the native ScTSC13 was overexpressed in Saccharomyces cerevisiae to increase its side activity in reducing p-coumaroyl-CoA to p-dihydrocoumaroyl-CoA. De novo production of phloretin, the first committed dihydrochalcone, was achieved by co-expression of additional relevant pathway enzymes. Naringenin, a major by-product of the initial pathway, was practically eliminated by using a chalcone synthase from barley with unexpected substrate specificity. By further extension of the pathway from phloretin with decorating enzymes with known specificities for dihydrochalcones, and by exploiting substrate flexibility of enzymes involved in flavonoid biosynthesis, de novo production of the antioxidant molecule nothofagin, the antidiabetic molecule phlorizin, the sweet molecule naringin dihydrochalcone, and 3-hydroxyphloretin was achieve

    Discovery of a highly active anticancer analogue of cardamonin that acts as an inducer of caspase-dependent apoptosis and modulator of the mTOR pathway

    Get PDF
    Nineteen analogues of cardamonin were semi-synthesized and tested against A549 and HK1 cell lines. The analogues were fully characterized via IR and NMR analyses, while compound 19 (a Cu (II) complex of cardamonin) was further characterized via HRMS, ELEMENTAL ANALYSIS, TGA and UV-VIS spectroscopy. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. Compound 19 was the most potent analogue possessing IC50 values of 13.2 µM and 0.7 µM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. Furthermore, the active analogues, especially 19, have generally demonstrated lower toxicity towards normal MRC5 cells. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin’s phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19), and results showed that the metal ion enhanced activity. 19 was also able to significantly inhibit the migration of A549 and HK1 cells. Further studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell-cycle arrest in both cell lines. These events further led to the induction of apoptosis by 19 via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Finally, 19 inhibited the expression levels of p-mTOR and p-4EBP1. These data indicated that 19 exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway
    corecore