68 research outputs found
Can local vibration alter the contribution of persistent inward currents to human motoneuron firing?
Abstract: The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), which in turn are enhanced by the neuromodulators serotonin and noradrenaline. Local vibration (LV) induces excitatory Ia input onto motoneurons and may alter neuromodulatory inputs. Therefore, we investigated whether LV influences the contribution of PICs to motoneuron firing. This was assessed in voluntary contractions with concurrent, ongoing LV, as well as after a bout of prolonged LV. High-density surface electromyograms (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. Twenty males performed isometric, triangular, dorsiflexion contractions to 20% and 50% of maximal torque at baseline, during LV of the tibialis anterior muscle, and after 30-min of LV. HD-EMG signals were decomposed, and motor units tracked across time points to estimate PICs through a paired motor unit analysis, which quantifies motor unit recruitmentâderecruitment hysteresis (ÎF). During ongoing LV, ÎF was lower for both 20% and 50% ramps. Although significant changes in ÎF were not observed after prolonged LV, a differential effect across the motoneuron pool was observed. This study demonstrates that PICs can be non-pharmacologically modulated by LV. Given that LV leads to reflexive motor unit activation, it is postulated that lower PIC contribution to motoneuron firing during ongoing LV results from decreased neuromodulatory inputs associated with lower descending corticospinal drive. A differential effect in motoneurons of different recruitment thresholds after prolonged LV is provocative, challenging the interpretation of previous observations and motivating future investigations. (Figure presented.). Key points: Neuromodulatory inputs from the brainstem influence motoneuron intrinsic excitability through activation of persistent inward currents (PICs). PICs make motoneurons more responsive to excitatory input. We demonstrate that vibration applied on the muscle modulates the contribution of PICs to motoneuron firing, as observed through analysis of the firing of single motor units. The effects of PICs on motoneuron firing were lower when vibration was concurrently applied during voluntary ramp contractions, likely due to lower levels of neuromodulation. Additionally, prolonged exposure to vibration led to differential effects of lower- vs. higher-threshold motor units on PICs, with lower-threshold motor units tending to present an increased and higher-threshold motor units a decreased contribution of PICs to motoneuron firing. These results demonstrate that muscle vibration has the potential to influence the effects of neuromodulation on motoneuron firing. The potential of using vibration as a non-pharmacological neuromodulatory intervention should be further investigated
A colorimetric strategy based on dynamic chemistry for direct detection of Trypanosomatid species
Leishmaniasis and Chagas disease are endemic in many countries, and re-emerging in the developed
countries. A rapid and accurate diagnosis is important for early treatment for reducing the duration
of infection as well as for preventing further potential health complications. In this work, we have
developed a novel colorimetric molecular assay that integrates nucleic acid analysis by dynamic
chemistry (ChemNAT) with reverse dot-blot hybridization in an array format for a rapid and easy
discrimination of Leishmania major and Trypanosoma cruzi. The assay consists of a singleplex PCR
step that amplifies a highly homologous DNA sequence which encodes for the RNA component of the
large ribosome subunit. The amplicons of the two different parasites differ between them by single
nucleotide variations, known as âSingle Nucleotide Fingerprintâ (SNF) markers. The SNF markers can
be easily identified by naked eye using a novel micro Spin-Tube device "Spin-Tube", as each of them
creates a specific spot pattern. Moreover, the direct use of ribosomal RNA without requiring the PCR
pre-amplification step is also feasible, further increasing the simplicity of the assay. The molecular
assay delivers sensitivity capable of identifying up to 8.7 copies per ÎŒL with single mismatch specificity.
The Spin-Tube thus represents an innovative solution providing benefits in terms of time, cost, and
simplicity, all of which are crucial for the diagnosis of infectious disease in developing countries.This research work has received funding from Junta de AndalucĂa, ConsejerĂa de EconomĂa e InnovaciĂłn (project
number 2012-BIO1778), the Spanish Ministerio de EconomĂa y Competitividad (Grants CTQ2012-34778,
BIO2016-80519-R, FPI Grant BES-2013- 063020). This research was partially supported by the 7th European
Community Framework Program (FP7-PEOPLE-2012-CIG-Project Number 322276)
A Systematic Review of the Effect of Cognitive Strategies on Strength Performance
Background
Researchers have tested the beliefs of sportspeople and sports medicine specialists that cognitive strategies influence strength performance. Few investigators have synthesised the literature.
Objectives
The specific objectives were to review evidence regarding (a) the cognitive strategyâstrength performance relationship; (b) participant skill level as a moderator; and (c) cognitive, motivational, biomechanical/physiological, and emotional mediators.
Method
Studies were sourced via electronic databases, reference lists of retrieved articles, and manual searches of relevant journals. Studies had to be randomised or counterbalanced experiments with a control group or condition, repeated measures, and a quality control score above 0.5 (out of 1). Cognitive strategies included goal setting, imagery, self-talk, preparatory arousal, and free choice. Dependent variables included maximal strength, local muscular endurance, or muscular power.
Results
Globally, cognitive strategies were reliability associated with increased strength performance (results ranged from 61 to 65 %). Results were mixed when examining the effects of specific strategies on particular dependent variables, although no intervention had an overall negative influence. Indeterminate relationships emerged regarding hypothesised mediators (except cognitive variables) and participant skill level as a moderator.
Conclusions
Although cognitive strategies influence strength performance, there are knowledge gaps regarding specific types of strength, especially muscular power. Cognitive variables, such as concentration, show promise as possible mediators
Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia
Purpose: To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Methods: Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Results: Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. Conclusion: The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue
The Effects of Mental Fatigue on Physical Performance: A Systematic Review.
Background: Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. It has recently been suggested that mental fatigue can affect physical performance.
Objective: Our objective was to evaluate the literature on impairment of physical performance due to mental fatigue and to create an overview of the potential factors underlying this effect.
\ud
Methods: Two electronic databases, PubMed and Web of Science (until 28 April 2016), were searched for studies designed to test whether mental fatigue influenced performance of a physical task or influenced physiological and/or perceptual responses during the physical task. Studies using short (<30Â min) self-regulatory depletion tasks were excluded from the review.
Results: A total of 11 articles were included, of which six were of strong and five of moderate quality. The general finding was a decline in endurance performance (decreased time to exhaustion and self-selected power output/velocity or increased completion time) associated with a higher than normal perceived exertion. Physiological variables traditionally associated with endurance performance (heart rate, blood lactate, oxygen uptake, cardiac output, maximal aerobic capacity) were unaffected by mental fatigue. Maximal strength, power, and anaerobic work were not affected by mental fatigue.
Conclusion: The duration and intensity of the physical task appear to be important factors in the decrease in physical performance due to mental fatigue. The most important factor responsible for the negative impact of mental fatigue on endurance performance is a higher perceived exertion
L'atelier de vitrification continue des produits de fission de Marcoule
Les auteurs exposent le principe du procĂ©dĂ© de vitrification des produits de fission mis au point en France et dĂ©crivent les installations construites Ă Marcoule pour la mise en Ćuvre de ce procĂ©dĂ© (atelier de vitrification et stockage des verres)
- âŠ