338 research outputs found

    Charles Piot, Remotely Global. Village Modernity in West Africa

    Get PDF
    Charles Piot propose ici une étude ethnographique des Kabré du nord Togo (les Kabré qui vivent dans les régions montagneuses du nord sont généralement assimilés aux Kabiyé, leurs voisins du sud). Nous sommes cependant loin de la monographie classique, puisque ce travail est fondé sur une théorie de l’échange et de l’individu qui sert de fil conducteur aux différents chapitres du livre. L’auteur entend montrer que la société kabré s’est constituée d’une part à travers les échanges constants en..

    Progress in the Verification and Validation Efforts for START: A Spent Fuel Routing Tool

    Full text link
    The US Department of Energys Office of Nuclear Energy is planning for an integrated waste management approach to transport, store, and eventually dispose of spent nuclear fuel and other high-level radioactive waste as part of the Integrated Waste Management program. In support of this effort, the Stakeholder Tool for Assessing Radioactive Transportation is being developed within the IWM program. This is a web-based decision support tool that can be used to analyze geospatial data related to the transportation of SNF and HLW.Comment: Presented at the '2023 ANS Winter Conference and Expo

    Wave-number Selection by Target Patterns and Side Walls in Rayleigh-Benard Convection

    Full text link
    We present experimental results for Rayleigh-Benard convection patterns in a cylindrical container with static side-wall forcing induced by a heater. This forcing stabilized a pattern of concentric rolls (a target pattern) with the central roll (the umbilicus) at the center of the cell after a jump from the conduction to the convection state. A quasi-static increase of the control parameter (epsilon) beyond 0.8 caused the umbilicus of the pattern to move off center. As observed by others, a further quasi-static increase of epsilon up to 15.6 caused a sequence of transitions. Each transition began with the displacement of the umbilicus and then proceeded with the loss of one convection roll at the umbilicus and the return of the umbilicus to a location near the center of the cell. Alternatively, with decreasing epsilon new rolls formed at the umbilicus but large umbilicus displacements did not occur. In addition to quantitative measurements of the umbilicus displacement, we determined and analyzed the entire wave-director field of each image. The wave numbers varied in the axial direction, with minima at the umbilicus and at the cell wall and a maximum at a radial position close to 2/3 Gamma. The wave numbers at the maximum showed hysteretic jumps at the transitions, but on average agreed well with the theoretical predictions for the wave numbers selected in the far field of an infinitely extended target pattern.Comment: ReVTeX, 11 pages, 16 eps figures include

    η\eta Carinae's Dusty Homunculus Nebula from Near-Infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity

    Get PDF
    Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η\eta Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the Great Eruption. We present the 2.4 - 670 μ\mum spectral energy distribution, constructed from legacy ISO observations and new spectroscopy obtained with the {\em{Herschel Space Observatory}}. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions which are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 μ\mum feature. Our preferred model contains nitrides AlN and Si3_3N4_4 in low abundances. Dust masses range from 0.25 to 0.44 M⊙M_\odot but Mtot≥M_{\rm{tot}} \ge 45 M⊙M_\odot in both cases due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5"" ×\times 7"" central region. An additional compact feature is detected at 390 μ\mum. We obtain LIRL_{\rm{IR}} = 2.96 ×\times 106^6 L⊙L_\odot, a 25\% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25-40\% of optical and UV radiation to escape from the central source. We also present an analysis of 12^{12}CO and 13^{13}CO J=5−4J = 5-4 through 9−89-8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [12^{12}C~{\sc{ii}}] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.Comment: Accepted in Ap

    Models for Pop I stars: implications for age determinations

    Full text link
    Starting from a few topical astrophysical questions which require the knowledge of the age of Pop I stars, we discuss the needed precision on the age in order to make progresses in these areas of research. Then we review the effects of various inputs of the stellar models on the age determination and try to identify those affecting the most the lifetimes of stars.Comment: 10 pages, 6 figures, 2 tables, IAU Symp. 258, D. Soderblom et al. ed

    Can rotation explain the multiple main sequence turn-offs of Magellanic Cloud star clusters?

    Full text link
    Many intermediate age star clusters in the Magellanic Clouds present multiple main sequence turn-offs (MMSTO), which challenge the classical idea that star formation in such objects took place over short timescales. It has been recently suggested that the presence of fast rotators among main sequence stars could be the cause of such features (Bastian & de Mink 2009), hence relaxing the need for extended periods of star formation. In this letter, we compute evolutionary tracks and isochrones of models with and without rotation. We find that, for the same age and input physics, both kinds of models present turn-offs with an almost identical position in the colour-magnitude diagrams. As a consequence, a dispersion of rotational velocities in coeval ensembles of stars could not explain the presence of MMSTOs. We construct several synthetic colour-magnitude diagrams for the different kinds of tracks and combinations of them. The models that best reproduce the morphology of observed MMSTOs are clearly those assuming a significant spread in the stellar ages - as long as ~400 Myr - added to a moderate amount of convective core overshooting. Only these models produce the detailed "golf club" shape of observed MMSTOs. A spread in rotational velocities alone cannot do anything similar. We also discuss models involving a mixture of stars with and without overshooting, as an additional scenario to producing MMSTOs with coeval populations. We find that they produce turn-offs with a varying extension in the CMD direction perpendicular to the lower main sequence, which are clearly not present in observed MMSTOs.Comment: To appear in MNRAS Letters. Figs. 2 and 3 are in colou

    Experimental Inoculation of Growing Pigs with U.S. Strains of Swine and Human Hepatitis E Viruses

    Get PDF
    U.S. strains of swine and human hepatitis E viruses (HEV) are closely related genetically. We found that swine and human HEV differ in virulence and both induce subclinical, but morphologically discernable, hepatitis in experimentally infected SPF pigs. Experimental inoculation of pigs with human HEV may provide a useful model to study the pathogenesis of hepatitis E virus infection and test efficacy of human HEV vaccines

    Simultaneous observations of lower tropospheric continental aerosols with a ground-based, an airborne, and the spaceborne CALIOP lidar system

    Get PDF
    International audienceWe present an original experiment with multiple lidar systems operated simultaneously to study the capability of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the Cloud-Aerosol Lidar Pathfinder Satellite Observation (CALIPSO), to infer aerosol optical properties in the lower troposphere over a midlatitude continental site where the aerosol load is low to moderate. The experiment took place from 20 June to 10 July 2007 in southern France. The results are based on three case studies with measurements coincident to CALIOP observations: the first case study illustrates a large-scale pollution event with an aerosol optical thickness at 532 nm (τa532) of ∼0.25, and the two other case studies are devoted to background conditions due to aerosol scavenging by storms with τa532 <0.1. Our experimental approach involved ground-based and airborne lidar systems as well as Sun photometer measurements when the conditions of observation were favorable. Passive spaceborne instruments, namely the Spinning Enhanced Visible and Infrared Imager (SEVERI) and the Moderate-resolution Imaging Spectroradiometer (MODIS), are used to characterize the large-scale aerosol conditions. We show that complex topographical structures increase the complexity of the aerosol analysis in the planetary boundary layer by CALIOP when τa532 is lower than 0.1 because the number of available representative profiles is low to build a mean CALIOP profile with a good signal-to-noise ratio. In a comparison, the aerosol optical properties inferred from CALIOP and those deduced from the other active and passive remote sensing observations in the pollution plume are found to be in reasonable agreement. Level-2 aerosol products of CALIOP are consistent with our retrievals

    Carinae's Dusty Homunculus Nebula from Near-Infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity

    Get PDF
    Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the great eruption. We present the 2.4-670 m spectral energy distribution, constructed from legacy Infrared Space Observatory observations and new spectroscopy obtained with the Herschel Space Observatory. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions that are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 m feature. Our preferred model contains nitrides AlN and Si3N4 in low abundances. Dust masses range from 0.25 to 0.44 M, but M(sub tot) 45 M in both cases, due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5" x 7" central region. An additional compact feature is detected at 390 m. We obtain L = 2.96 x 10(exp 6) Lunar mass, a 25% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25%-40% of optical and UV radiation to escape from the central source. We also present an analysis of 12CO and 13CO J = 5-4 through 9-8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [12CII] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures

    The nature of point source fringes in mid-infrared spectra acquired with the James Webb Space Telescope

    Full text link
    The constructive and destructive interference in different layers of the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) detector arrays modulate the detected signal as a function of wavelength. Additionally, sources of different spatial profiles show different fringe patterns. Dividing by a static fringe flat could hamper the scientific interpretation of sources whose fringes do not match that of the fringe flat. We find point source fringes measured by the MIRI Medium-Resolution Spectrometer (MRS) to be reproducible under similar observing conditions. We want, thus, to identify the variables, if they exist, that would allow for a parametrization of the signal variations induced by point source fringe modulations. We do this by analyzing MRS detector plane images acquired on the ground. We extracted the fringe profile of multiple point source observations and studied the amplitude and phase of the fringes as a function of field position and pixel sampling of the point spread function of the optical chain. A systematic variation in the amplitude and phase of the point source fringes is found over the wavelength range covered by the test sources (4.9-5.8 μ\mum). The variation depends on the fraction of the point spread function seen by the detector pixel. We identify the non-uniform pixel illumination as the root cause of the reported systematic variation. We report an improvement after correction of 50% on the 1σ\sigma standard deviation of the spectral continuum. A 50% improvement is also reported in line sensitivity for a benchmark test with a spectral continuum of 100 mJy. The improvement in the shape of weak lines is illustrated using a T Tauri model spectrum. Consequently, we verify that fringes of extended sources and potentially semi-extended sources and crowded fields can be simulated by combining multiple point source fringe transmissions.Comment: 17 pages, 31 figure
    • …
    corecore