The constructive and destructive interference in different layers of the
James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) detector
arrays modulate the detected signal as a function of wavelength. Additionally,
sources of different spatial profiles show different fringe patterns. Dividing
by a static fringe flat could hamper the scientific interpretation of sources
whose fringes do not match that of the fringe flat. We find point source
fringes measured by the MIRI Medium-Resolution Spectrometer (MRS) to be
reproducible under similar observing conditions. We want, thus, to identify the
variables, if they exist, that would allow for a parametrization of the signal
variations induced by point source fringe modulations. We do this by analyzing
MRS detector plane images acquired on the ground. We extracted the fringe
profile of multiple point source observations and studied the amplitude and
phase of the fringes as a function of field position and pixel sampling of the
point spread function of the optical chain. A systematic variation in the
amplitude and phase of the point source fringes is found over the wavelength
range covered by the test sources (4.9-5.8 μm). The variation depends on
the fraction of the point spread function seen by the detector pixel. We
identify the non-uniform pixel illumination as the root cause of the reported
systematic variation. We report an improvement after correction of 50% on the
1σ standard deviation of the spectral continuum. A 50% improvement is
also reported in line sensitivity for a benchmark test with a spectral
continuum of 100 mJy. The improvement in the shape of weak lines is illustrated
using a T Tauri model spectrum. Consequently, we verify that fringes of
extended sources and potentially semi-extended sources and crowded fields can
be simulated by combining multiple point source fringe transmissions.Comment: 17 pages, 31 figure