2,473 research outputs found

    Failure of Intravenous Morphine to Serve as an Effective Instrumental Reinforcer in Dopamine D2 Receptor Knock-Out Mice

    Get PDF
    The rewarding effects of opiates are thought to be mediated through dopaminergic mechanisms in the ventral tegmental area, dopamine-independent mechanisms in the nucleus accumbens, or both. The purpose of the present study was to explore the contribution of dopamine to opiate-reinforced behavior using D2 receptor knock-out mice. Wild-type, heterozygous, and D2 knock-out mice were first trained to lever press for water reinforcement and then implanted with intravenous catheters. The ability of intravenously delivered morphine to maintain lever pressing in these mice was studied under two schedules of reinforcement: a fixed ratio 4 (FR4) schedule (saline, 0.1, 0.3, or 1.0 mg/kg, per injection) and a progressive ratio (PR) schedule (1.0 mg/kg, per injection). In the wild-type and heterozygous mice, FR4 behavior maintained by morphine injections was significantly greater than behavior maintained by vehicle injections. Response rate was inversely related to injection dose and increased significantly in the wild-type and heterozygous mice when the animals were placed on the PR schedule. In contrast, the knock-out mice did not respond more for morphine than for saline and did not respond more when increased ratios were required by the PR schedule. Thus, morphine served as a positive reinforcer in the wild-type and heterozygous mice but failed to do so in the knock-out mice. Under this range of doses and response requirements, the rewarding effects of morphine appear to depend critically on an intact D2 receptor systemFil: Elmer, Greg I.. University of Maryland; Estados UnidosFil: Pieper, Jeanne O.. National Institutes of Health; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Low, Malcolm J.. Oregon Health and Sciences University; Estados UnidosFil: Grandy, David K.. Oregon Health and Sciences University; Estados UnidosFil: Wise, Roy A.. National Institutes of Health; Estados Unido

    Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Get PDF
    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration

    Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Get PDF
    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell resistance resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid cathode feed electrolyzer cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration

    Drosophila Eye Model to Study Neuroprotective Role of CREB Binding Protein (CBP) in Alzheimer’s Disease

    Get PDF
    Background: The progressive neurodegenerative disorder Alzheimer’s disease (AD) manifests as loss of cognitive functions, and finally leads to death of the affected individual. AD may result from accumulation of amyloid plaques. These amyloid plaques comprising of amyloid-beta 42 (Aβ42) polypeptides results from the improper cleavage of amyloid precursor protein (APP) in the brain. The Aβ42 plaques have been shown to disrupt the normal cellular processes and thereby trigger abnormal signaling which results in the death of neurons. However, the molecular-genetic mechanism(s) responsible for Aβ42 mediated neurodegeneration is yet to be fully understood. Methodology/Principal Findings: We have utilized Gal4/UAS system to develop a transgenic fruit fly model for Aβ42 mediated neurodegeneration. Targeted misexpression of human Aβ42 in the differentiating photoreceptor neurons of the developing eye of transgenic fly triggers neurodegeneration. This progressive neurodegenerative phenotype resembles Alzheimer’s like neuropathology. We identified a histone acetylase, CREB Binding Protein (CBP), as a genetic modifier of Aβ42 mediated neurodegeneration. Targeted misexpression of CBP along with Aβ42 in the differentiating retina can significantly rescue neurodegeneration. We found that gain-of-function of CBP rescues Aβ42 mediated neurodegeneration by blocking cell death. Misexpression of Aβ42 affects the targeting of axons from retina to the brain but misexpression of full length CBP along with Aβ42 can restore this defect. The CBP protein has multiple domains and is known to interact with many different proteins. Our structure function analysis using truncated constructs lacking one or more domains of CBP protein, in transgenic flies revealed that Bromo, HAT and polyglutamine (BHQ) domains together are required for the neuroprotective function of CBP. This BHQ domain of CBP has not been attributed to promote survival in any other neurodegenerative disorders. Conclusions/Significance: We have identified CBP as a genetic modifier of Aβ42 mediated neurodegeneration. Furthermore, we have identified BHQ domain of CBP is responsible for its neuroprotective function. These studies may have significant bearing on our understanding of genetic basis of AD

    Dynamics of Cloud-Top Generating Cells in Winter Cyclones. Part III: Shear and Convective Organization

    Get PDF
    Cloud-top generating cells (GCs) are a common feature atop stratiform clouds within the comma head of winter cyclones. The dynamics of cloud-top GCs are investigated using very high-resolution idealized WRF Model simulations to examine the role of shear in modulating the structure and intensity of GCs. Simulations were run for the same combinations of radiative forcing and instability as in Part II of this series, but with six different shear profiles ranging from 0 to 10ms21 km21 within the layer encompassing the GCs. The primary role of shear was to modulate the organization of GCs, which organized as closed convective cells in simulations with radiative forcing and no shear. In simulations with shear and radiative forcing, GCs organized in linear streets parallel to the wind. No GCs developed in the initially stable simulations with no radiative forcing. In the initially unstable and neutral simulations with no radiative forcing or shear, GCs were exceptionally weak, with no clear organization. In moderate-shear (Du/Dz 5 2, 4ms21 km21) simulations with no radiative forcing, linear organization of the weak cells was apparent, but this organization was less coherent in simulations with high shear (Du/Dz 5 6, 8, 10ms21 km21). The intensity of the updrafts was primarily related to the mode of radiative forcing but was modulated by shear. The more intense GCs in nighttime simulations were either associated with no shear (closed convective cells) or strong shear (linear streets). Updrafts within GCs under conditions with radiative forcing were typically ;1–2 ms21 with maximum values , 4ms21

    A randomised controlled trial investigating the effects of Mediterranean diet and aerobic exercise on cognition in cognitively healthy older people living independently within aged care facilities: The Lifestyle Intervention in Independent Living Aged Car

    Full text link
    Background: The rapid ageing of the population is becoming an area of great concern, both globally and in Australia. On a societal level, the cost of supporting an ageing demographic, particularly with their associated medical requirements, is becoming an ever increasing burden that is only predicted to rise in the foreseeable future. The progressive decline in individuals\u27 cognitive ability as they age, particularly with respect to the ever increasing incidence of Alzheimer\u27s Disease (AD) and other cognitive complications, is in many respects one of the foundation stones of these concerns. There have been numerous observational studies reporting on the positive effects that aerobic exercise and the Mediterranean diet appear to have on improving cognitive ability. However, the ability of such interventions to improve cognitive ability, or even reduce the rate of cognitive ageing, has not been fully examined by substantial interventional studies within an ageing population. Methods: The LIILAC trial will investigate the potential for cognitive change in a cohort of cognitively healthy individuals, between the ages of 60 and 90 years, living in independent accommodation within Australian aged care facilities. This four-arm trial will investigate the cognitive changes which may occur as a result of the introduction of aerobic exercise and/or Mediterranean diet into individuals\u27 lifestyles, as well as the mechanisms by which these changes may be occurring. Participants will be tested at baseline and 6 months on a battery of computer based cognitive assessments, together with cardiovascular and blood biomarker assessments. The cardiovascular measures will assess changes in arterial stiffness and central pulse pressures, while the blood measures will examine changes in metabolic profiles, including brain derived neurotrophic factor (BDNF), inflammatory factors and insulin sensitivity. Conclusion: It is hypothesised that exercise and Mediterranean diet interventions, both individually and in combination, will result in improvements in cognitive performance compared with controls. Positive findings in this research will have potential implications for the management of aged care, particularly in respect to reducing the rate of cognitive decline and the associated impacts both on the individual and the broader community

    Large-Scale Tracing of Ground Water with Sulfur Hexafluoride

    Full text link

    Pennsylvania Folklife Vol. 42, No. 2

    Get PDF
    • Charles E. Starry, Adams County Chair Maker • Lewis Miller\u27s Chronicle of York: A Picture of Life in Early America • Family Anecdotes from a Georges Creek Home • The Pennsylvania-German Schrank • The Barns of Towamensing Township • A Review of Robert F. Ensminger\u27s The Pennsylvania Barnhttps://digitalcommons.ursinus.edu/pafolklifemag/1136/thumbnail.jp
    • …
    corecore