42,579 research outputs found

    Frequency coded threshold logic unit for pattern recognition application

    Get PDF
    Frequency coded threshold logic unit for pattern recognition systems based on central nervous syste

    Nucleophilicity/Electrophilicity Excess in Analyzing Molecular Electronics

    Full text link
    Intramolecular electron transfer capability of all metal aromatic and anti-aromatic aluminum cluster compounds is studied in terms of density functional theory based global and local reactivity descriptors. This study will provide important inputs towards the fabrication of the material required for molecular electronics.Comment: 21 pages, 6 figures, 13 table

    X-ray bursts from solar flares behind the limb

    Get PDF
    X-ray bursts are identified from the UCSD OSO-7 X-ray experiment data. X-ray spectroheliograms of OSO-5, H alpha activity at the limb, and the emergence and disappearance of sunspot groups at the limb were studied and 17 active centers were found as likely seats of the X-ray bursts beyond the limb. The analysis of 37 X-ray bursts and their physical parameters is presented. Results show that (1) the distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events; (2) that radiation is the dominant cooling mechanism for the hot flare plasma; and (3) that the scale height for X-ray emission in the 5-10 keV range is large. Observations show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Hard X-ray emission over extended regions is indicated

    Permeability of a one-dimensional potential barrier

    Get PDF
    Permeability of one dimensional potential barrie

    Liquid Level Sensor for High Temperature Molten Salt in Confined Container

    Get PDF
    Electrical resistance measurements on different rod materials in liquid solutions, molten salts, or molten lead are considered to design a liquid level sensor in a sealed containers when the temperature of the fluid is very high (~1000ºC) and conventional measurements are not possible due to properties of the fluid or condition of the container. An analytical solution to the problem is adopted to reduce the cost of the sensor and overcome the difficulties of calibration of sensors at high temperature for prediction of the level of liquid. An electrical circuit model is suggested for analytical solution to compute the resistivity versus height of the electrode rod submerged in the liquid in a narrow container. Good prediction of circuit model for experimental results is verified by comparison of analytical results of different combination of liquid solutions and rods’ material with experimental graphs
    corecore