67 research outputs found

    Inherent Curiosity and the Effect of Error Generation on the Ability to Learn German Words

    Get PDF
    A Research Methods Project supervised by Dr. Hilary Stebbins (Spring 2021)

    Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury

    Get PDF
    During renal ischemia-reperfusion, local and distant tissue injury is caused by an influx of neutrophils into the affected tissues. Here we measured the kinetics of margination and transmigration of neutrophils in vivo in the kidney and lungs following renal ischemia-reperfusion. After bilateral renal injury, kidney neutrophil content increased threefold at 24 h. The neutrophils were found primarily in the interstitium and to a lesser degree marginated to the vascular endothelium. These interstitial neutrophils had significantly lower levels of intracellular IFN-γ, IL-4, IL-6, and IL-10 a tendency for decreased amounts of IL-4 and TNF-α compared to the marginated neutrophils. Localization of the neutrophils to the kidney interstitium was confirmed by high resolution microscopy and these sites of transmigration were directly associated with areas of increased vascular permeability. Activation of the adenosine 2A receptor significantly decreased both kidney neutrophil transmigration by about half and vascular permeability by about a third. After unilateral renal ischemia-reperfusion, the unclipped kidney and lungs did not accumulate interstitial neutrophils or have increased vascular permeability despite a marked increase of neutrophil margination in the lungs. Our findings suggest there is a sequential recruitment and transmigration of neutrophils from the vasculature into the kidney interstitium at the site of tissue injury following renal ischemia-reperfusion

    Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss

    Get PDF
    While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts

    Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs

    Get PDF
    Author summaryWhy was this study done? Maternal height, BMI, blood glucose, and blood pressure are associated with gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects underlying these observed associations are not clear. What did the researchers do and find? We dissected the relative contributions of maternal and fetal genetic effects using haplotype genetic score analysis in 10,734 mother-infant pairs of European ancestry. Genetically elevated maternal height is associated with longer gestational duration and larger birth size. In the fetus, alleles associated with adult height are positively associated with birth size. Alleles elevating blood pressure are associated with shorter gestational duration through a maternal effect and are associated with reduced fetal growth through a fetal genetic effect. Alleles that increase blood glucose in the mother are associated with increased birth weight, whereas risk alleles for type 2 diabetes in the fetus are associated with reduced birth weight. Alleles raising birth weight in fetus are associated with shorter gestational duration and higher maternal blood pressure during pregnancy. What do these findings mean? Maternal size and fetal growth are important factors in shaping the duration of gestation. Fetal growth is influenced by both maternal and fetal effects. Higher maternal BMI and glucose levels positively associate with birth weight through maternal effects. In the fetus, alleles associated with higher metabolic risks are negatively associated with birth weight. More rapid fetal growth is associated with shorter gestational duration and higher maternal blood pressure. These maternal and fetal genetic effects can largely explain the observed associations between maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes. Background Many maternal traits are associated with a neonate's gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects behind these observed associations are unresolved. Methods and findings Based on 10,734 mother-infant duos of European ancestry from the UK, Northern Europe, Australia, and North America, we constructed haplotype genetic scores using single-nucleotide polymorphisms (SNPs) known to be associated with adult height, body mass index (BMI), blood pressure (BP), fasting plasma glucose (FPG), and type 2 diabetes (T2D). Using these scores as genetic instruments, we estimated the maternal and fetal genetic effects underlying the observed associations between maternal phenotypes and pregnancy outcomes. We also used infant-specific birth weight genetic scores as instrument and examined the effects of fetal growth on pregnancy outcomes, maternal BP, and glucose levels during pregnancy. The maternal nontransmitted haplotype score for height was significantly associated with gestational duration (p= 2.2 x 10(-4)). Both maternal and paternal transmitted height haplotype scores were highly significantly associated with birth weight and length (p<1 x 10(-17)). The maternal transmitted BMI scores were associated with birth weight with a significant maternal effect (p= 1.6 x 10(-4)). Both maternal and paternal transmitted BP scores were negatively associated with birth weight with a significant fetal effect (p= 9.4 x 10(-3)), whereas BP alleles were significantly associated with gestational duration and preterm birth through maternal effects (p= 3.3 x 10(-2)andp= 4.5 x 10(-3), respectively). The nontransmitted haplotype score for FPG was strongly associated with birth weight (p= 4.7 x 10(-6)); however, the glucose-increasing alleles in the fetus were associated with reduced birth weight through a fetal effect (p= 2.2 x 10(-3)). The haplotype scores for T2D were associated with birth weight in a similar way but with a weaker maternal effect (p= 6.4 x 10(-3)) and a stronger fetal effect (p= 1.3 x 10(-5)). The paternal transmitted birth weight score was significantly associated with reduced gestational duration (p= 1.8 x 10(-4)) and increased maternal systolic BP during pregnancy (p= 2.2 x 10(-2)). The major limitations of the study include missing and heterogenous phenotype data in some data sets and different instrumental strength of genetic scores for different phenotypic traits. Conclusions We found that both maternal height and fetal growth are important factors in shaping the duration of gestation: genetically elevated maternal height is associated with longer gestational duration, whereas alleles that increase fetal growth are associated with shorter gestational duration. Fetal growth is influenced by both maternal and fetal effects and can reciprocally influence maternal phenotypes: taller maternal stature, higher maternal BMI, and higher maternal blood glucose are associated with larger birth size through maternal effects; in the fetus, the height- and metabolic-risk-increasing alleles are associated with increased and decreased birth size, respectively; alleles raising birth weight in the fetus are associated with shorter gestational duration and higher maternal BP. These maternal and fetal genetic effects may explain the observed associations between the studied maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes.Peer reviewe

    A Mendelian Trait for Olfactory Sensitivity Affects Odor Experience and Food Selection

    Get PDF
    SummaryHumans vary in acuity to many odors [1–4], with variation within olfactory receptor (OR) genes contributing to these differences [5–9]. How such variation also affects odor experience and food selection remains uncertain [10], given that such effects occur for taste [11–15]. Here we investigate β-ionone, which shows extreme sensitivity differences [4, 16, 17]. β-ionone is a key aroma in foods and beverages [18–21] and is added to products in order to give a pleasant floral note [22, 23]. Genome-wide and in vitro assays demonstrate rs6591536 as the causal variant for β-ionone odor sensitivity. rs6591536 encodes a N183D substitution in the second extracellular loop of OR5A1 and explains >96% of the observed phenotypic variation, resembling a monogenic Mendelian trait. Individuals carrying genotypes for β-ionone sensitivity can more easily differentiate between food and beverage stimuli with and without added β-ionone. Sensitive individuals typically describe β-ionone in foods and beverages as “fragrant” and “floral,” whereas less-sensitive individuals describe these stimuli differently. rs6591536 genotype also influences emotional associations and explains differences in food and product choices. These studies demonstrate that an OR variant that influences olfactory sensitivity can affect how people experience and respond to foods, beverages, and other products

    Particle Size Distribution Controls the Threshold Between Net Sediment Erosion and Deposition in Suspended Load Dominated Flows

    Get PDF
    The central problem of describing most environmental and industrial flows is predicting when material is entrained into, or deposited from, suspension. The threshold between erosional and depositional flow has previously been modeled in terms of the volumetric amount of material transported in suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle size limits on a flow's ability to transport material in suspension, (ii) particle size distribution effects, and (iii) a new particle entrainment function, where erosion is defined in terms of the power used to lift mass from the bed. While current suspended load transport models commonly use a single characteristic particle size, the model developed herein demonstrates that particle size distribution is a critical control on the threshold between erosional and depositional flow. The new model offers an order of magnitude, or better, improvement in predicting the erosional‐depositional threshold and significantly outperforms existing particle‐laden flow models

    The Eye of the Beholder: Youths and Parents Differ on What Matters in Mental Health Services

    Get PDF
    The goal of this study was to examine the degree to which youths and caregivers attend to different factors in evaluating their experiences with mental health programs. Youth (n = 251) receiving mental health services at community agencies and their caregivers (n = 275) were asked open-ended questions regarding the positive and negative aspects of the services. Qualitative analyses revealed some agreement but also divergence between youth and caregivers regarding the criteria by which services were evaluated and aspects of services that were valued most highly. Youths’ positive comments primarily focused on treatment outcomes while caregivers focused more on characteristics of the program and provider. Youths’ negative comments reflected dissatisfaction with the program, provider, and types of services offered while caregivers expressed dissatisfaction mainly with program characteristics. Results support the importance of assessing both youth and caregivers in attempts to understand the factors used by consumers to evaluate youth mental health services

    Major-Effect Alleles at Relatively Few Loci Underlie Distinct Vernalization and Flowering Variation in Arabidopsis Accessions

    Get PDF
    We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions, selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect loci
    corecore