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Abstract The central problem of describing most environmental and industrial flows is predicting when
material is entrained into, or deposited from, suspension. The threshold between erosional and
depositional flow has previously been modeled in terms of the volumetric amount of material transported in
suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle
size limits on a flow's ability to transport material in suspension, (i) particle size distribution effects, and (iii) a
new particle entrainment function, where erosion is defined in terms of the power used to lift mass from the
bed. While current suspended load transport models commonly use a single characteristic particle size,
the model developed herein demonstrates that particle size distribution is a critical control on the threshold
between erosional and depositional flow. The new model offers an order of magnitude, or better,
improvement in predicting the erosional-depositional threshold and significantly outperforms existing
particle-laden flow models.

1. Introduction

When particle-laden flows erode or deposit material, the fundamental properties of the flow (hydrody-
namics), and through time, the surfaces over which a flow travels (morphodynamics) are changed.
Therefore, whether a flow is net erosional or depositional is of key importance in environmental and indus-
trial fluid dynamics, for example, on landscape erosion and evolution (Bufe et al., 2016; Houssais et al.,, 2015),
the efficiency of hydraulic engineering structures such as dams (Wang et al,, 2015; Yang, 2006), the effective-
ness of flood protection measures (Nittrouer et al., 2012), and pipe flow obstruction or erosion-corrosion
(Parsi et al., 2014). Equivalent terminology may use subsaturated flow and supersaturated flow to define if
aflow is net erosional or depositional (van Maren et al., 2009). The threshold between erosion and deposition,
that is, the condition of equilibrium in particle-laden flow, is arguably the most important prediction a sedi-
ment transport model is required to make. Hence, here we use the prediction of the threshold between net
erosional and net depositional flow, as the key criterion for testing sediment transport models.

In natural flows, sediments are predominately transported by turbulent fluid motion as suspended load, and
material interacting with the bed (bedload) is negligible in terms of bulk sediment flux (Syvitski et al., 2003);
consequently, we concentrate on modeling the transport of suspended load. In keeping with most existing
predictions of suspended load transport, we assume low concentration, non-cohesive sediment suspen-
sions, and model the limiting threshold where sediment erosion balances deposition (Yang, 2006).
Therefore, in dilute flow, sediment concentration below or above an equilibrium value respectively defines
if a flow is net erosional or depositional (van Maren et al., 2009). The test of the suspended load transport
models is thus the comparison of observed versus predicted hydrodynamic and suspended load conditions
at the net erosion-deposition threshold.

Common suspended load transport models are based on flow velocity, depth, concentration, and a single
characteristic particle size (i.e., monodisperse models; Bagnold, 1966; Bizzi & Lerner, 2015; Celik & Rodi,
1991; Garcia, 2008; Kubo et al., 2005; Velikanov, 1954; Yang, 2006), often the median particle diameter.
Although suspended load transport models can show good agreement with individual sets of laboratory
or field-based observations, they invariably show poorer agreement when compared with other empirical
data sets (Walling, 2009; Yang, 2006). However, the particle size distribution of sediment in natural (Bayat
et al, 2015) and industrial flows (Parsi et al., 2014; Sajeesh & Sen, 2014) is often wide and fine-tail skewed
(motivating the standard use of a log-normal particle size scale; Garcia, 2008; Soulsby, 1997). As has been
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previously recognized, particle distribution may affect sediment transport processes (Smith & Hopkins,
1973); thus, some numerical sediment transport models use finite discretization of particle size distribu-
tions, that is, polydisperse models, to simulate the transport dynamics of particles of mixed sizes
(Armanini & Di Silvio, 1988; Basani et al, 2014; Blom & Parker, 2004; Dorrell, Hogg, & Pritchard, 2013;
Garcia & Parker, 1991; Halsey et al, 2017; McLean, 1991, 1992; Strauss & Glinsky, 2012; Wilcock &
Southard, 1988). However, the effect of mixed size distributions, that is, polydispersity, on the threshold
between erosion and deposition from suspended load particle transport, and thus the effectiveness of
common monodisperse models of sediment transport at the deposition-erosion threshold, has not been
robustly investigated.

A further key shortcoming of most sediment transport models is that capacity and competence are not jointly
considered. Capacity describes the maximum amount of material that a turbulent flow can support: that is,
capacity can be defined as the sum volumetric concentration, ¢ (sediment volume per unit volume,
vol/vol), of all material in suspension at the net erosional-depositional threshold (Dorrell et al., 2013, and
references therein). Competence describes the maximum particle size that can be transported by a flow.
Although these two limits on particle transport are fundamentally related (Dorrell et al., 2013), most
approaches to threshold calculation only incorporate one of these controls (e.g., Kubo et al., 2005, Shields,
1936), which reduces their effectiveness for general use.

2. Methods

Here we examine the ability of existing models to describe the erosion-deposition threshold of suspended
load sediment transport by comparing them to a collated empirical data set of equilibrium flow (Ashida &
Okabe, 1982; Brooks, 1954; Cellino & Graf, 1999; Coleman, 1986; Einstein & Chien, 1955; Graf & Cellino,
2002; Guy et al., 1966; Lyn, 1988; Nordin & Dempster, 1963; Vanoni, 1946; Vanoni & Nomicos, 1960). We then
introduce a new sediment transport model that incorporates polydispersity and allows for both competence
and capacity-driven sedimentation, and demonstrate that this outperforms existing models.

2.1. Empirical Data

The collated empirical data set includes flows with both narrow and wide particle size distributions and
experimental and field observations (see Supporting Data Table S1). Collected data were restricted to flat
beds to avoid enhanced sediment suspension effects arising from flow over an uneven bed (Soulsby, 1997).

As reported in original data sources, empirical measurements collated include depth average flow velocity, u,
and shear velocity, ux; flow depth, h; depth average concentration of the suspended load, ¢; and the particle
size distribution at threshold conditions (see section 2.2). Original data sources use different models to deter-
mine shear velocity, that is, (i) depth-based, u, = \/g—ig where g is gravity and S is bed slope (Guy et al., 1966;
Nordin & Dempster, 1963); (i) hydraulic-radius based u, = \/gRp,S, where Ry, is the hydraulic radius (Coleman,
1986; Einstein & Chien, 1955; Lyn, 1988; Vanoni, 1946; Vanoni & Nomicos, 1960); (iii) Reynolds-stress based,
either derived from fitting a Rouse number to the flow's equilibrium concentration profile (Ashida &
Okabe, 1982) or fitting the shear velocity to the shear stress profile (Cellino & Graf, 1999; Graf & Cellino,
2002); and (iv) bed-friction u. = u+/f»/8, where f, is a specified bed friction coefficient (Brooks, 1954).
Depth average variables were calculated by integrating empirical profiles over the height of the flow and
dividing by the flow depth.

2.2. Particle Size Distribution Fitting

To close both monodisperse and polydisperse models of the threshold between net erosional and deposi-
tional flow, both a characteristic suspended load particle size and the particle size distribution are determined
from the collated empirical data (Figures 1 and 2). Monodisperse models are closed using the median particle
size, dsq, although other authors have used different percentile particle sizes to characterize suspended and
bedload sediment transport (van Rijn, 1984a).

The collated set of empirical data of flow at the threshold between net erosion and deposition can be sepa-
rated into three types based on particle size data recorded (see Figure 1 and Supporting Data Table S1):

1. Both the initial (before use in laboratory experiments) and the suspended load size distribution are
recorded (Experiments 1-7, from Guy et al., 1966).
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Figure 1. Dimensionless shear stress, T, at the net erosion-deposition threshold, as a function of lognormal standard devia-
tion of the particle-size (see section 2.2). Residuals plot deviation from line of best fit. The colors denote ¢-scale median
particle size, where ¢= — logs (d/dp) and dy = 1 mm. Concentration is depicted by symbol size. Empirical data types (A-C),
and original sources, are defined in section 2 and in Supporting Data Table S1.

2. Only the size distribution of the suspended load (fluvial data) is recorded (Experiments 8-30, from Nordin
& Dempster, 1963).

3. Only theinitial size distribution of material before use in laboratory experiments is recorded (Experiments
31-70, from Ashida & Okabe, 1982; Brooks, 1954; Coleman, 1986; Cellino & Graf, 1999; Einstein & Chien,
1955; Graf & Cellino, 2002; Lyn, 1988; Vanoni, 1946; and Vanoni & Nomicos, 1960).

The type A and B empirical data may be directly used to determine an appropriate particle size distribution.
Here a skewed log-normal distribution, with a cumulative distribution function, CDF(d),

CDF(¢) = %, ( %eﬂﬁ_f)zwgf)e‘fdf) dx, ()
T

is fitted to empirical measurements of the CDF for three ¢-scale particle sizes (fine, medium, and coarse). The

distribution is discretized, using a ¢-scale bin size of 0.01. The location, & scale, o; and shape, y, parameters

are calculated by solving the resultant set of linked numerical equations using Matlab’s nonlinear system sol-

ver, fsolve, based on Powell’s method (Powell, 1964). The derived particle distribution is constrained to the

central 99% region of a fitted probability function to avoid infinitely small and infinitely large particle classes.

For the type C data, a direct fit to particle size data cannot be used, as fractionation will result in change in the
particle size distribution (Whitehouse, 1995). It is found from the type A data that the median particle size of
suspended load, @5, (as denoted by tilde notation), is consistently equivalent to the 8th percentile of the
initial distribution, ggg. This agrees with previous studies that report the median suspended load particle size
as in the range of 2nd to 15th percentiles of material comprising the bed (Whitehouse, 1995). Although this
fractionation rule may not hold for predominately fine-grained systems (see, e.g., Nittrouer, Mohrig, & Allison,
2011), the median size of the type A data ranges from 2.97 > ¢s, > 2.33 and the median (unweighted) size of
the type C data is also coarse, predominantly in the range 3 > ¢50> 2 (see Supporting Data Table S1). Thus, for
the type C data, only the assumed suspended load distribution is weighted, following the empirical rule
determined above, to account for particle fractionation. However, scale and shape parameters are assumed
unchanged in the weighted distribution. A two-stage process is thus used to determine a characteristic par-
ticle size distribution:

1. Afit of a skewed log-normal distribution to initial particle data to determine: the 8th percentile particle
size and the scale, ®, and shape, y, parameters.
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Figure 2. Comparison of empirical and modeled net erosion-deposition thresholds. Plots show the observed, Ty, versus the
predicted, T',, dimensionless shear stress for: monodisperse models Types (a) I, (b) Il and (c) lil and (e) IV, and the
polydisperse models (d) Ill and (f) IV. Symbols are as in Figure 1, the dashed red line describes exact fit. The colors refer to
the log-normal standard deviation of particle-size, .

2. A shift in the fitted skewed log-normal distribution such that ¢, is equivalent to pgg.

The particle distribution shift in stage 2 is made using Matlab’s fsolve to find a new weighted location para-
meter, £ such that for the initial particle size distribution, the cumulative distribution function evaluated at,

dos, is equal to 50%, that is, CDF (¢bgg, &, @, ) = 50%.

3. Results
3.1. Particle-Laden Flow Hydrodynamics at Equilibrium

Here the hydrodynamics of particle-laden flow at equilibrium are quantified by the dimensionless ratio of the
flow force acting on stationary particles to their submerged weight: here defined as I" = 1+/gApdso, where 1,
Ap = ps — p, and dso, respectively, denote shear stress (characterized by a shear velocity: us* = +/p), particle-
fluid density difference, and median particle diameter. The dimensional critical shear velocity for incipient
particle motion of a particulate bed is denoted ux.. Such an approach is chosen as it allows direct comparison
to the common dimensionless models of incipient motion (Shields, 1936) and the Rouse condition for
suspended load transport (Rouse, 1937). Examination of the collated laboratory and field data set of
flows at the net erosional-depositional threshold shows that the hydrodynamics of the particle-laden
flow at equilibrium are intrinsically related to the particle size distribution. The dimensionless shear stress
required to maintain threshold conditions increases as the particle size distribution widens (Figure 1). This
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effect even occurs when the median particle size remains constant and thus cannot be captured by
monodisperse models.

3.2. Net Erosion and Deposition Threshold Models

Existing models of the net erosional-depositional threshold are tested and compared against empirical obser-
vations. The goodness of fit between observed, T',, and predicted, I, dimensionless shear stress (Figure 2), is
given by the Root Mean Square Logarithmic Error (RMSLE) for which smaller numbers represent lower error. A
new model is then proposed based on these comparisons.

3.2.1. Rouse Models

In competence-based (Type | “Rouse”) models, deposition rate is an assumed function of flow stratification. As
stratification scales with the settling to shear velocity ratio (Soulsby, 1997), some equilibrium flow models
(Kneller, 2003; Komar, 1985; Kubo et al., 2005; Lynds et al., 2014) have assumed a net erosional-depositional
threshold given by

WS = Bu*7 (2)

where w; is the (particle-size dependent) characteristic particle settling velocity (see the supporting informa-
tion) and B is an empirical Rouse parameter (Rouse, 1937). Settling velocity is estimated based on the median
particle diameter. Although alternative models have used different percentile particle sizes to characterize
the settling velocity of sediment in suspension, they may all be criticized as failing to describe the dynamics
of the finer or coarser particle classes, respectively (see Komar, 1985, and references therein). An iterative best
fit of the theoretical model to data yields f = 0.300 and RMLSE = 0.746 (Figure 2a). The Rouse parameter
describes a threshold between erosion and deposition independent of concentration or particle size distribu-
tion. Regardless of whether the particle size distribution can be ignored, the Rouse criterion must be funda-
mentally flawed as the threshold condition is known to be dependent on the concentration of material in
suspension (Garcia, 2008). A corollary is that the commonly used transition criterion between bedload
(transport dominated by particle-bed interaction) and suspended load (transport dominated by turbulent
fluid motion), u~ = ws (Soulsby, 1997) should also take concentration into account (see the supporting
information).

3.2.2. Flow Power Models

Capacity-based (Type Il “Flow Power”) models assume that when deposition and erosion are in balance, the
rate of work done keeping material in suspension, gApcws, is directly proportional to available flow power
(Bagnold, 1966; Celik & Rodi, 1991; Garcia, 2008; Velikanov, 1954), that is proportional to pus>/h (see the sup-
porting information; Pope, 2000; Wright & Parker, 2004). The net erosional-depositional threshold is thus
implicitly defined by

gApcwsh = apu?. 3)

In equation (3) h is flow depth and a is an empirical constant specifying the energy efficiency of the flow (Bizzi
& Lerner, 2015; Li et al., 2014). An iterative best fit of the theoretical model to data yields a = 0.290 and
RMSLE = 0.531 (Figure 2b). Although derivable from first principles (see the supporting information), mechan-
istic flow power models do not offer a means to account for particle size distribution or competence effects
on threshold conditions.

3.2.3. Flux Balance Models

Alternatively, competence-capacity-based (Type Il “Flux Balance”) models equate the net rate of sediment
entrainment from the bed to the net rate of deposition from suspended load (Garcia, 2008; Garcia &
Parker, 1991, 1993; Smith & Hopkins, 1973), a formulation that can be traced back to the original morphody-
namic models of Exner (1920, 1925). For a polydisperse suspension of N distinct particle classes, individual, ¢;,
and sum, ¢ = Z;:1Nci, particle class concentrations determine the criteria for threshold flow (Dorrell et al.,
2013), as given by the N + 1 conditions

c N
_ ; - _
aEi = ¢'wyViand E G =Cm- 4)
Here the sediment entrainment rate is defined by E;; the packing concentration, ¢, = 0.6, is assumed constant

(Dorrell & Hogg, 2010); particle class concentration near the bed, at height z* = 0.01 h (Soulsby, 1997), is
defined by ¢*; and particle class concentration in the active layer of the bed, which freely exchanges
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material with material transported as suspended load (Dorrell et al., 2013), is defined by ¢;—. Here particle
distribution-dependent hiding effects in the active layer are assumed negligible (Wilcock & Southard,
1988) and the active layer is assumed to contain only particle classes also in suspension (Dorrell et al.,
2013). Given the near-bed concentration and sediment entrainment rate, the threshold condition is given
by the minimum shear velocity that satisfies equation (4) where 0 < ¢~ < ¢cy,. Near bed concentration is pro-
portional to individual capacity ¢;* = ¢i/A;; assuming that the flow is dilute and turbulence dampening is neg-
ligible (see, e.g., Gelfenbaum & Smith, 1986; Smith & McLean, 1977; van Rijn, 1984a), the shear and particle
settling velocity-dependent stratification shape function, A;, is given by the depth-averaged Rouse profile
(see the supporting information; Rouse, 1937).

Previous studies suggest that entrainment rate is a competence-limited function of forces applied to
the bed, that is, the available flow power above that required for incipient particle motion given by
Aus/h = max(u™ — u«20)*?/h (van Rijn, 1984b) and the properties of the material being entrained
(van Rijn, 1984b; Garcia & Parker, 1991, 1993), that is, particle size, d;. Here ux; is the critical shear velocity
for incipient motion of a particle of given size. To close equation (4), a common sediment entrainment func-
tion, based on erosional flow experiments (Basani et al., 2014; Dorrell et al., 2013; van Rijn, 1984b), is used
that takes the form

Ei = yp(gipd;) " AU, (5)

(y being an empirical parameter describing entrainment efficiency). This particle-size dependent entrainment
function is employed in current (Type Ill) models, equations (4) and (5). An iterative best fit of the monodis-
perse form of this model to data yields y = 3.79 x 10~3 and a RMSLE = 0.670 (Figure 2c). Using a polydisperse
model to explicitly model size distribution improves the fit giving vy = 1.51 x 1072 and a RMSLE = 0.501
(Figure 2d).

3.2.4. Flow-Power Flux-Balance Model

In the limit of a monodisperse unstratified suspension, where deposition scales with cws (Dorrell et al., 2013),
the flow power model (3) implies that erosion of sediment scales with pu? /gAph. However, the flux balance
model, equations (4) and (5), does not recover this mechanistic description of the flow. In the regime of an
unstratified suspension, ws < ux, a series expansion of the flux balance model (equations (4) and (5)) implies
that equilibrium erosion (in balance with deposition) scales inversely with particle diameter, cw,<pu+>/(gApd),
to leading order.

This result motivates the development of a new flow-power, flux-balance (Type IV) model that recovers the
mechanistic flow power model cwg « pu*3/(gAph) of threshold flow, for wg « ux; describes flow competence;
and may be extended to describe polydisperse suspensions. This is achieved using a new sediment entrain-
ment function for flow at the threshold between net erosion and net deposition. Here the power required to
lift sediment into suspended load, gApE; is assumed proportional to the depth-averaged available flow
power, pAu*ﬁ/h. While entrainment is limited by particle-size dependent competence, the new entrainment
function has the form

E; = ep(giph) ' AL, ©)

which scales with flow depth and is a key departure from existing entrainment models that are scaled
using particle diameter (¢ being an empirical parameter describing entrainment efficiency). This flow
depth-dependent entrainment function is used to close the flow-power flux-balance (Type IV) model, equa-
tions (4) and (6), An iterative best fit of the monodisperse form of this model to empirical data yields
€ = 490 and a RMSLE = 0.461 (Figure 2c); the polydisperse form of this model improves the fit, where
€ = 13.2 and a RMSLE = 0.385 (Figure 2d). The improvement in threshold flow predictions by using a flow
depth rather than particle diameter (Garcia & Parker, 1993; van Rijn, 1984b) scaled entrainment rate is also
demonstrated by the decrease in RMSLE from 0.501 to 0.385 between the Type Il and IV models
(Figures 2d and 2f).

3.3. Reference Concentration

A reference concentration condition is often used to close modeled sediment in suspension (Soulsby, 1997).
As stressed by Dorrell and Hogg (2011), such a boundary condition can only be applied at the threshold
between net erosion and deposition, as its use in temporally or spatially evolving flows may result in
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Figure 3. Dependence of the dimensionless shear stress, I, on particle size standard deviation. (a) Lognormal suspended
load particle size distributions, truncated to the central 99% range. (b) Threshold dimensionless shear stress, I, derived
using the flux balance model (Type IV), at average empirical flow conditions (c = 0.1% and h = 0.25 m; see Supporting Data
Table S1). Particle size distribution is specified a priori by a log-normal distribution (a). The dotted white curves describe the
near-bed reference concentration, % — 1Nci+. The solid gray curve denotes the Shields condition for incipient motion,
while the dashed gray curve denotes the Rouse condition for suspended load transport.

erroneous gravitationally unstable profiles of suspended sediment concentration. The reference
concentration may easily be determined from the flux balance models (Type Il and IV) as the sum near-

N

bed concentration, Zci*; see Figure 3. For example, assuming the capacity to transport particles in
i=

suspension is indeed related to flow power (Bagnold, 1966; Velikanov, 1954), the near-bed reference

concentration is shown from equations (4) and (6) to be a function of the composition of the active layer

of the bed and particle size (settling velocity) distribution

NN, P G A —
Zi:1 G _Z":VEWZ e wherezi:1 G =Cm. (7)

Therefore, the near-bed suspended load reference concentration must be particle size (settling velocity)-
dependent, given the balance between the work done keeping sediment in suspension and the available
power of the flow. This contrasts with research that hypothesizes that near-bed concentration is particle-size
independent (for particles <200 um in diameter) (e.g., Eggenhuisen et al., 2017). More generally, the refer-
ence concentration is also dependent on the composition of the active layer, ¢;". Thus, there is no unique
solution for the suspended load capacity of a polydisperse suspension of particulate material at a given shear
velocity (Dorrell et al., 2013). However, if the concentration, size distribution, and the shear velocity depen-
dence of the vertical distribution of material in suspension are known, a unique solution for the shear velocity
at the threshold between net deposition and erosion may be found using the flux balance models, Types Ill
and IV (Figures 2 and 3).
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4, Discussion

Comparing all the models discussed, monodisperse models in general provide a poorer collapse between the
observed, I, and predicted, I',, dimensionless shear (Figures 2a-2c). The discretization of particle size distri-
bution improves model predictions; the polydisperse form of the new Type IV model, which uses the flow
power based sediment entrainment formula, provides the best collapse (Figure 2f). Notably, where sus-
pended particle size distribution was explicitly recorded (i.e., the 30 experiments comprising the type A
and B data), the Type IV model provides the best prediction of threshold between net erosion-deposition
(compare Figures 2b and 2f). Fit of the type C data is also improved using the Type IV model, but this depends
on the interpolated distribution of material in suspension (section 2.2). Moreover, discretization of the particle
size distribution significantly improves prediction of flow conditions recorded in laboratory and fluvial obser-
vations (compare Figures 2e and 2f). This is due to increasingly wider particle size distributions enhancing
vertical flow stratification and thus depositional flux. Consequently, the shear stress must increase for the
flow to maintain the net erosional-depositional threshold. The effect of stratification is magnified by the non-
linear dependence of settling velocity on particle size (Soulsby, 1997).

As shown in Figure 3, the net erosion-deposition threshold for particulate laden flows at equilibrium occurs in
the suspended load regime. In contrast to previous studies, where sediment transport was predicted using
characteristic particle size (see, e.g., Bagnold, 1966; Bizzi & Lerner, 2015; Celik & Rodi, 1991; Kubo et al.,
2005; Soulsby, 1997; Velikanov, 1954; Yang, 2006), the net erosion-deposition threshold is shown to also
depend strongly on particle size distribution (Figures 1 and 3). For example, the dimensionless shear stress
required to maintain threshold conditions for coarse silt (p = 5) increases by ~3,000% when varying from
monodisperse, ¢ = 0, to poorly sorted (Folk, 1966), ¢ ~ 2, sediment (Figure 3b). In contrast, changes in char-
acteristic particle size have a comparatively small effect, with a maximum ~250% increase in dimensionless
shear stress for 8 > ¢ > —2 and o = 1 (Figure 3b). Thus, particle size distribution is a dominant control on
the dimensionless shear stress at the threshold between net erosional and depositional flow; although, it is
noted, from Figure 1, that characteristic particle size and suspended load concentration also affect this
threshold. Moreover, this threshold also influences other critical sediment transport parameters including
flow concentration (i.e., capacity) and in turn the maximum sediment transport flux per unit area (i.e., the pro-
duct of flow concentration and velocity, which is proportional to shear stress). The order of magnitude varia-
tions in dimensionless shear stress with particle size distribution (Figure 3) may thus explain the large errors
inherent in existing monodisperse sediment transport models (Yang, 2006).

As posed, sediment concentration, determined by stratification (2), flow power (3), or entrainment, equations
(5) and (6), increases with the amount of turbulent mixing characterized by shear velocity. However, with
increasing volume concentration, there is a nonlinear relationship between the energy needed to keep mate-
rial in suspension and flow power, since turbulence is progressively dampened with suspension of particulate
material (Yang, 2006). Thus, the threshold formulation, equations (2)-(6), only holds for dilute flow, not for the
sub-super saturated threshold of hyperconcentrated flows (van Maren et al., 2009). Transition to hypercon-
centrated flow occurs across a wide range of concentrations, 0.1 < ¢ < 0.4 (see van Maren et al.,, 2009, and
references therein). Moreover, while we have proposed empirical closures scaling the dependence on shear
velocity, further work is required to elucidate the physical processes controlling these scaling parameters.

Here we have shown that the effect of particle size distribution on controlling the threshold between net ero-
sion and net deposition from suspended load transport is far more important than has previously been
recognized. Previous work may have overstated the predictive ability of monodisperse models as they have
predominantly compared them to comparatively narrow particle size distributions. Comparison to wider par-
ticle size distributions, typical of many natural environments and industrial settings, demonstrates the limita-
tions of these monodisperse models and the importance of particle size distribution (Figure 3).

5. Conclusions

Here it is shown that particle size distribution is a dominant control on the threshold between net erosion and
net deposition of suspended particles in environmental and industrial flows. Thus, polydisperse, rather than
monodisperse, particle size modeling approaches are required to predict the threshold between the entrain-
ment and deposition of particulate material into suspended load. Broader particle size distributions enhance
suspended sediment stratification and thus the near-bed sediment concentration and depositional flux.
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Consequently, threshold conditions occur at higher shear stresses in flows carrying broader particle distribu-
tions compared with those carrying narrower distributions. Therefore, the threshold does not have unique
values for specific combinations of flow concentration and characteristic particle size—implicit in existing
theories—but has a range of possible values depending on particle size distribution. To predict the threshold,
a new sediment entrainment function is proposed based on the flow-power model of suspended load parti-
cle transport capacity. By doing so, suspended load polydispersity is incorporated, providing a better than
order-of-magnitude improvement compared to existing models. The results also explain the wide variations
observed in current models when the net erosional-depositional threshold is based on a characteristic parti-
cle size. This model establishes a basis for accurate predictions of particle-laden flow hydrodynamics and
morphodynamics, applicable across a wide range of environmental, engineering, and industrial settings.
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