439 research outputs found
Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex
Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT) and subsequently the amine groups (ACNT). All three CNTs (the as-synthesized and functionalized) underwent reaction with an iron organometallic complex (FePcS), iron(III) phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS
Physical, mechanical and hygrothermal properties of lateritic building stones (LBS) from Burkina Faso
International audienc
Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption
An ordered mesoporous carbon (OMC) was prepared by a chemical vapor deposition technique using liquid petroleum gas (LPG) as the carbon source. During synthesis, LPG was effectively adsorbed in the ordered mesopores of SBA-15 silica and converted to a graphitic carbon at 800 °C. X-ray diffraction and nitrogen adsorption/desorption data and high-resolution transmission electron microscopy (HRTEM) of the OMC confirmed its ordered mesoporous structure. The OMC was utilized as an adsorbent in the removal of dyes from aqueous solution. A commercial powder activated carbon (AC) was also investigated to obtain comparative data. The efficiency of the OMC for dye adsorption was tested using acidic dye acid orange 8 (AO8) and basic dyes methylene blue (MB) and rhodamine B (RB). The results show that adsorption was affected by the molecular size of the dye, the textural properties of carbon adsorbent and surface-dye interactions. The adsorption capacities of the OMC for acid orange 8 (AO8), methylene blue (MB) and rhodamine B (RB) were determined to be 222, 833, and 233 mg/g, respectively. The adsorption capacities of the AC for AO8, MB, and RB were determined to be 141, 313, and 185 mg/ g, respectively. The OMC demonstrated to be an excellent adsorbent for the removal of MB from wastewater.Web of Scienc
Metal organic framework nanosheets in polymer composite materials for gas separation
[EN] Composites incorporating two-dimensional nanostructures within polymeric matrices have potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of freestanding nanosheets has proved challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometre lateral dimensions and nanometre thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increase in the separation selectivity with pressure. As revealed by tomographic focused ion beam scanning electron microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared with isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications.The research leading to these results has received funding (J.G., B.S.) from the European Research Council under the European Unionâs Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335746, CrystEng-MOF-MMM. T.R. is grateful to TUDelft for funding. G.P. acknowledges the A. von Humboldt Foundation for a research grant. A.C., I.L. and F.X.L.i.X. thank Consolider-Ingenio 2010 (project MULTICAT) and the âSevero Ochoaâ programme for support. I.L. also thanks CSIC for a JAE doctoral grant.RĂłdenas Torralba, T.; Luz MĂnguez, I.; Prieto GonzĂĄlez, G.; Seoane, B.; Miro, H.; Corma CanĂłs, A.; Kapteijn, F.... (2015). Metal organic framework nanosheets in polymer composite materials for gas separation. Nature Materials. 14(1):48-55. https://doi.org/10.1038/nmat4113S4855141Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282â286 (2006).Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699â712 (2012).Choi, S. et al. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angew. Chem. Int. Ed. 47, 552â555 (2008).Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72â75 (2011).Corma, A., Fornes, V., Pergher, S. B., Maesen, Th. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353â356 (1998).Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563â568 (2008).Li, P-Z., Maeda, Y. & Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 47, 8436â8438 (2011).Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246â249 (2009).Hu, G., Wang, N., OâHare, D. & Davis, J. One-step synthesis and AFM imaging of hydrophobic LDH monolayers. Chem. Commun. 287â289 (2006).Yamamoto, K., Sakata, Y., Nohara, Y., Takahashi, Y. & Tatsumi, T. Organic-inorganic hybrid zeolites containing organic frameworks. Science 300, 470â472 (2003).Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705â714 (2003).FĂ©rey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191â214 (2008).GĂŒcĂŒyener, C., Bergh, J., Gascon, J. & Kapteijn, F. Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132, 17704â17706 (2010).Deng, H. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 12, 846â850 (2010).Khaletskaya, K. et al. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J. Am. Chem. Soc. 135, 10998â11005 (2013).Corma, A., Garcia, H. & LlabrĂ©s i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606â4655 (2010).Mueller, U. et al. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626â636 (2006).Gascon, J. & Kapteijn, F. Metal-organic framework membranes-high potential, bright future? Angew. Chem. Int. Ed. 49, 1530â1532 (2010).Li, Y. S. et al. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. 22, 3322â3326 (2010).Gascon, J. et al. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chem. Mater. 24, 2829â2844 (2012).Bae, T-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 49, 9863â9866 (2010).Zornoza, B. et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 47, 9522â9524 (2011).Zornoza, B., Tellez, C., Coronas, J., Gascon, J. & Kapteijn, F. Metal organic frameworks based mixed matrix membranes: An increasingly important field of research with a large application potential. Microp. Mesop. Mater. 166, 67â78 (2013).Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Mem. Sci. 389, 34â42 (2012).Li, T., Pan, Y., Peinemann, K-V. & Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Mem. Sci. 425â426, 235â242 (2013).Makiura, R. et al. Surface nano-architecture of a metal-organic framework. Nature Mater. 9, 565â571 (2010).Mori, W. et al. Synthesis of new adsorbent copper(II) terephthalate. Chem. Lett. 26, 1219â1220 (1997).Xin, Z., Bai, J., Shen, Y. & Pan, Y. Hierarchically micro- and mesoporous coordination polymer nanostructures with high adsorption performance. Cryst. Growth Des. 10, 2451â2454 (2010).Adams, R., Carson, C., Ward, J., Tannenbaum, R. & Koros, W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mater. 131, 13â20 (2010).Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal-organic framework. Eur. J. Inorg. Chem. 2009, 2338â2343 (2009).Ameloot, R. et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382â387 (2011).Chen, Z. et al. Microporous metal-organic framework with immobilized -OH functional groups within the pore surfaces for selective gas sorption. Eur. J. Inorg. Chem. 2010, 3745â3749 (2010).Karra, J. R. & Walton, K. S. Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks. J. Phys. Chem. C 114, 15735â15740 (2010).Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. & Liu, J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41, 2308â2322 (2012).Seki, K., Takamizawa, S. & Mori, W. Characterization of microporous copper(II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by gas adsorption. Chem. Lett. 30, 122â123 (2001).Carson, C. G. et al. Structure solution from powder diffraction of copper 1,4-benzenedicarboxylate. Eur. J. Inorg. Chem. 2014, 2140â2145 (2014).Corma, A., Diaz, U., Domine, M. E. & Fornes, V. AlITQ-6 and TiITQ-6: Synthesis, characterization, and catalytic activity. Angew. Chem. Int. Ed. 39, 1499â1501 (2000).Corma, A., Fornes, V. & Diaz, U. ITQ-18 a new delaminated stable zeolite. Chem. Commun. 2642â2643 (2001).Rouquerol, F., Rouquerol, J. & Sing, K. Adsorption by Powders and Porous Solids (Academic, 1999).Dubinin, M. M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235â241 (1960).Uchic, M. D., Holzer, L., Inkson, B. J., Principe, E. L. & Munroe, P. Three-dimensional microstructural characterization using focused ion beam tomography. Mater. Res. Soc. Bull. 32, 408â416 (2007).Rodenas, T. et al. Visualizing MOF mixed matrix membranes at the nanoscale: Towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 24, 249â256 (2013).Wang, X. et al. Unusual rheological behaviour of liquid polybutadiene rubber/clay nanocomposite gels: The role of polymer-clay interaction, clay exfoliation, and clay orientation and disorientation. Macromology 39, 6653â6660 (2006).Yang, Y. et al. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 20, 14â27 (2008).Yeo, Z. Y., Chew, T. L., Zhu, P. W., Mohamed, A. R. & Chai, S-P. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. J. Nature Gas Chem. 21, 282â298 (2012).McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675â683 (2006).Vinh-Thang, H. & Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 113, 4980â5028 (2013)
Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications
Polymers of intrinsic microporosity (PIMs) are currently attracting interest due to their unusual combination of high surface areas and capability to be processed into free-standing films. However, there has been little published work with regards to their physical and mechanical properties. In this paper, detailed characterisation of PIM-1 was performed by considering its chemical, gas adsorption and mechanical properties. The polymer was cast into films, and characterised in terms of their hydrogen adsorption at â196 °C up to much higher pressures (17 MPa) than previously reported (2 MPa), demonstrating the maximum excess adsorbed capacity of the material and its uptake behaviour in higher pressure regimes. The measured tensile strength of the polymer film was 31 MPa with a Youngâs modulus of 1.26 GPa, whereas the average storage modulus exceeded 960 MPa. The failure strain of the material was 4.4%. It was found that the film is thermally stable at low temperatures, down to â150 °C, and decomposition of the material occurs at 350 °C. These results suggest that PIM-1 has sufficient elasticity to withstand the elastic deformations occurring within state-of-the-art high-pressure hydrogen storage tanks and sufficient thermal stability to be applied at the range of temperatures necessary for gas storage applications
- âŠ