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Abstract 

Earth is a predominant eco-friendly construction material which provides a good occupational 

comfort consuming less energy. To improve the durability performance, stabilization is 

commonly adopted. However the additional costs induced by such process cannot be afforded by 

the majority of the population in developing countries, and in some circumstances, the 

environmental side effect may be controversial. Alternatively, laterite stone which is natural 

available and readily stabilized material that can be used for building construction is studied in 

this paper. Lateritic building stones (LBS) from Burkina-Faso are studied for their hygroscopic, 

physical and mechanical characteristics by conducting experimental investigation such as 

moisture sorption and desorption, moisture buffering, three-point bending, and cyclic unconfined 

compression test. The analysis is focused on the moisture ingress of the material and its impact 

on the mechanical strength and also an insight on understanding linear elastic behaviour of LBS 
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is carried out. The experimental results are compared with the stabilized and un-stabilized earthen 

construction materials. This comparison underlines the good performances of LBS, in both 

mechanical and hygrothermal properties as a building material. 

Keywords: Lateritic building stones, Physical, Mechanical and Hygrothermal Characteristics, 

Building Materials, Burkina Faso  

 

1  Introduction 

With ever growing construction industry, the concern of the environmental aspect is also 

growing [1, 2]. Because main stream construction materials contribute huge junk to global 

pollution, the need to promote locally available renewable and sustainable building materials is 

taking centre stage. Research work on exploring engineering properties of the alternative building 

material is ongoing. Use of compressed earth block, rammed earth, adobe, etc., are being 

considered as the strong alternatives [3–8]. Actually, earthen material needs few or no 

transformation to be used as a construction material and it can be directly extracted close to the 

construction site. Moreover, the affinity of raw earth for water molecules brings a well-known 

quality for interior comfort, both acoustic, hygric and thermal [9–12]. The water in the wall is 

also responsible of its complexity in mechanical behaviour: water retention contributes to the 

cohesion of the material, but too important water content leads to a strong decrease in mechanical 

resistance and can lead to collapse [13]. A way to enhance the mechanical performance of earth-

based materials, and in particular to limit the impact of water content, is to use mineral stabilizers 

like lime and cement [14,15]. However, the environmental side-effects of stabilized earth are 

sometimes controversial [16–18] and the additional costs induced by such process cannot be 

afforded by the majority of the population in developing countries.  

In this context, the use of LBS, which is a sustainable alternative has not been given due 

importance in terms of its mechanical capabilities. The laterite deposits which are abundantly 

available in tropical countries [19][20], is rich in aluminium, silica  and iron oxides, varies with 

mineral  and chemical composition based on formation [21]. The mineralogy and natural 
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chemical stabilization due to weathering makes this porous material sufficiently strong, thus it is 

cut and used as building blocks. The term laterite was first coined by Buchanan in 1807 [20], then 

it was used as replacement for bricks in Malabar region, India.  

Thanks to its natural inherent property, making way to be potential alternative building 

material. Due to lack of sufficient scientific data, confidence level in using it as an alternative 

building material is decreasing [22]. Variation in mineral and chemical composition due to 

different exposure makes it even more important to have scientific knowledge about the material 

property to propose a standardized procedure.  

Mechanical parameters such as compressive strength, flexural strength were studied by 

the active researchers in India and Africa. From studies [23–26], variation of strength with 

location and strata were observed, and also variation of strength in dry and saturated condition 

was reported. Due to climate condition in tropical countries, and laterite being porous medium, 

material response to moisture buffering condition and its influence on mechanical parameters 

need to be given due importance. These parameters being vital in promoting laterite stonesas a 

sustainable alternative, and lack of scientific data promoted this study. In this paper, the LBS 

from Burkina-Faso is tested and analysed for its response to moisture buffering by studying 

sorption and desorption, dynamic moisture buffering, and mechanical characteristics such as 

flexural strength, compressive strength and modulus of elasticity.  

2 Materials and methods 

2.1 Description of the tested material 

The quarry of studied LBS is situated in Toussiana, located at 10°50’ N, 4°37’W in the province 

of Houet, West of Burkina Faso, geographical map is show in Figure 1. Use of locally available 

LBS proves economical due to its low cost benefit and better thermal comfort, in surrounding 

locality the LBS are mainly used for building houses, churches, schools, etc. Lateritic stone 

blocks of dimension 240×120×120mm transported from the quarry are tested for its properties, 

the dry density of the material was found to be 1.85g/cm
3
 with 23% porosity and the thermal 

conductivity at 23°C and 50% RH was found to be 0.96W/(m.K) from ‘FP2C’ hot wire apparatus 

manufactured by NEOTIM. The density of the other alternative building materials such as CEB, 
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unstabilised rammed earth and adobe, reported from earlier studies are in between 1.5-2.2g/cm
3
 

[27,28], 1.8-2.2g/cm
3
 [29–32] and 1.3-2.2 g/cm

3
 [8,33–35] respectively depending on the water 

content and compaction energy adopted while manufacturing. Considering similar material 

properties and local availability; use of lateritic stone as an alternative looks to be more 

beneficial, economical and eco-friendly. 

 

Figure 1: Location of Toussiana in the province of Houet in Burkina- Faso 

 

2.2 Procedure and sample conditioning for the hydric tests 

2.2.1 Sorption isotherms 

The sorption isotherms were measured to describe the hygroscopic behaviour of the material. The 

sorption isotherms indicate the moisture content adsorbed by the material to reach equilibrium 

with the vapour pressure of the surrounding environment. Sorption and desorption isotherms 

were measured according to the ISO standard [36]. Airtight containers were used with saturated 

salt solutions to set imposed relative humidity (RH) levels. All samples were previously oven 

dried at 105°C to constant mass before placing them successively in RH levels of 23, 43, 59, 75, 

85 and 97%. The airtight containers were placed in a conditioning room at 20°C and 60% RH. 

Scales with a precision of 0.01 g were used to record the mass variation of the samples. The mass 

was recorded until the variation was less than 0.02 g between two measurements.  Before starting 
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the desorption curve the samples were humidified at 97% RH until stabilization and then placed 

in different RH levels. A repetition of three samples per RH was realized to minimize 

measurement errors. 

2.2.2 Dynamic vapour sorption-desorption test  

The moisture buffering test was used to investigate the dynamics of moisture adsorption when the 

material is exposed to a change in vapour pressure from the surrounding environment. With a 

high buffering capacity, the material may have a positive influence to stabilize fluctuations in the 

internal environment of dwellings. Such behaviour is commonly allocated to hygroscopic porous 

building materials such as raw earth and also bio-based materials. The moisture buffering test 

consists of exposing a known surface of the sample to fluctuating RH levels under isothermal 

conditions. Small samples of 120 mm x 60 mm with a thickness of 60mm were sealed on all 

surfaces a part one which was the exposed surface. The procedure of the Nordtest was followed 

[37], the samples were exposed during 8h to a RH of 75% then during 16h to RH of 33% at 23°C. 

The moisture buffering value (MBV) practical (1) could be calculated from stable cycles.  

             
  

     
                   Equation1. 

Stable cycles occur when the variation between the initial mass and the final mass of the cycle is 

less than 5%. Depending on the material stable cycles are achieved more or less rapidly. In this 

case the stabilization occurred rapidly after 4 to 5 cycles. The samples were initially 

preconditioned at 50 %RH and 23 °C. 

2.3 Procedure and experimental protocols of the mechanical tests 

2.3.1 Sample conditioning 

Lateritic stones are cut into seven small beams of dimension 240mm×60mm×60mm (L×b×d). 

Two of these beams designated as N1 and N2 were stored at 25°C and 50% relative humidity in a 

climate controlled chamber until the moisture equilibrium is attained, the average moisture 

content during testing was found to be around 2%. Two other beams designated as D1 and D2 

were stored at 100-105°C for obtaining oven dry state. The remaining two designated as W1 & 

W2 were moisten by spraying known quantity of water and wrapped air tight before storing in the 

climatic chamber at 25°C, the moisture content during test was found to be around 4%.  
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From the specimens tested for the flexural strength, largest rectangular shaped part is recovered 

and dressed to fulfil the aspect ratio; such that dimension of the test specimen is 

120mm×60mm×60mm (h×l×b). Samples tested for compressive strength are stored and 

conditioned in similar conditions as described for flexural beam specimens. 

2.3.2 Three point bending test 

 

Figure 2 :  Three Point Bending Test set up 

Customized three point loading system is positioned on the uniaxial compressive testing frame. 

The base frame of the three point loading system has two adjustable supports (roller support at 

one end and hinge at the other end). Lateritic specimen of length 240mm is positioned on the 

supports with span of 190mm. Figure 2 shows the three point bending test setup for lateritic beam 

specimens. Beam displacement is measured using LVDT, which is placed below the point load 

where the maximum deflection occurs due to bending. Specimens in bending test are 

programmed to load at 5µm/s displacement controlled rate. Due to limited quantity of Lateritic 

stone blocks, flexural test are planned for three moisture content. Lime paste was used to prepare 

an even and smooth surface at LVDT point of contact.  
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2.3.3 Unconfined Compressive Test 

 

Figure 3 Compression Test Setup 

In this study, it was decided to carry out unconfined compression test on the LBS because it gives 

the most accurate strength of the material [28,38,39]. In this test, axial and lateral displacements 

of the specimen are measured using extensometer and LVDT respectively. As shown in Figure 

3Error! Reference source not found., two extensometers of 22.5mm length are mounted on the 

opposite face of the specimen, to avoid the platen effect extensometers are positioned on the mid 

1/3
rd

 height. On the other two opposite faces, LVDT’s are positioned at mid-height to measure 

lateral displacement. Due to uneven surface, measurements of the LVDT’s are not precise and are 

neglected in this analysis.  

To study the elastic behaviour of the lateritic stone, specimens are subjected to cyclic loading at 5 

pre-defined loads. The 5 pre-defined loads are 0.36kN, 1.08kN, 1.62kN, 2.72kN and 3.78kN. For 

each pre-defined load, three repetitions were followed before moving to the next pre-defined 

load. Test was programmed such that, after reaching the defined load, specimen was unloaded 
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until 0.36kN in each repetition, except for the first cycle in which specimen was unloaded to 0kN. 

At the end of fifth cycle for 3.78kN load, specimen was loaded until failure. All specimens were 

loaded throughout the test at a controlled displacement rate of 5µm/s.  

3 Hydric characterization 

3.1 Sorption-desorption isotherms 

The experimental results of the measured mass variation are shown in Figure 4 as the moisture 

equilibrium points for the adsorption and the desorption curve. The difference between 

adsorption and desorption curves is the hysteresis loop. The International Union of Pure and 

Applied Chemistry (IUPAC) describe four types of hysteresis loops H1, H2, H3 and H4. The 

hysteresis loop observed for the lateritic stones is of H3 type. In Rouquerol et al. [40] the H3 type 

hysteresis loop is described as resulting from aggregates of platy particles or adsorbents 

containing slit-shaped pores.  

The error bars represented in Figure 4 represents the variation within at least 3 samples measured 

per RH. It is common to have greater uncertainty at higher humidity levels as seen in this case. 

In Figure 4, the sorption isotherm of the Lateritic samples is compared with a soil used as 

unstabilised rammed earth (St Antoine) and a Stabilized Rammed Earth (SRE). The data for the 

SRE sample was taken from Hall and Allinson [41], the desorption data was ignored as only a 

very small hysteresis could be observed. The 433 mix corresponds to a SRE mix containing 4 

volumes of gravels, 3 volumes of sand and 3 volumes of silty clay. The sorption isotherms of the 

lateritic material show strong adsorption capacity compared with the rammed earth materials, see 

Figure 4. 
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Figure 4 :  Adsorption (Ads) and Desorption (Des) isotherms (SRE: Stabilized 

Rammed Earth, 433 samples from Hall and Allinson, 2009 [41]) 

 

3.2 Moisture Buffering Value Test 

Figure 5, shows the results of the moisture buffering test. Data points are the average of the 

results of three samples. The error bar is a simple representation of the standard deviation within 

the results of the three samples. The results are compared with unstabilised earth (St Antoine) 

used for a rammed earth building and the SRE sample from Allinson et Hall [42]. The lateritic 

sample has a very high adsorption compared to the earth samples.  
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Figure 5:  Moisture buffering test 

From the experimental curve the MBVpractical can be calculated according to equation 1. From the 

data of the three samples the maximum value after 8h of adsorption varies between 111 and 124 

g/m². Therefore the MBV varies between 2.65 and 2.95 g/(m².%RH). In the classification 

proposed in [37] the lateritic building stones would therefore classify as excellent buffering 

materials. 

4 Mechanical characterization 

4.1 Three point bending test 

As briefed earlier, in the flexural testing, beam deflection is measured by the LVDT positioned 

right below the load point. Point load is measured in Newton [N], and the deflection is measured 

in mm. From theory of bending, the equations to calculate flexural stress in MPa and Strain are 

given below.  
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                Equation 2. 

     
     

  
               Equation 3. 

With  σxx : the flexural stress or modulus of rupture in [MPa], P : point load in [N], L : length of 

the beam span (in mm), b : breadth of the beam (in mm), d: depth of the beam (in mm), εxx : 

longitudinal strain (in mm/mm), δ : deflection of the beam under point load (in mm).  

 

Figure 6: Flexural stress- strain of lateritic specimens 

From the load and deflection data obtained during the test, the flexural stress-strain 

characteristics of the lateritic stone beams in 3 points bending test is plotted as shown in Figure 6. 

‘N’ representing series exposed to ambient atmosphere with internal moisture of 2%, ‘D’ 

representing series with dry state specimens and ‘W’ representing specimen with average 

moisture content of 4% during the test. As predictable, specimen with low moisture content 

exhibits higher flexural strength characteristics. The average flexural strength of the lateritic 

specimens at ambient condition is found to be 0.49MPa. There is a tendency of decrease in 

flexural strength of the material with increase in moisture content as shown in Figure 7. The 
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average flexural strength of the lateritic specimen at 4% moisture content is 40% of the dry state 

flexural strength. The average flexural modulus of the laterite in ambient condition is calculated 

to be 650MPa; the flexural modulus of the material is calculated by plotting the best fit linear 

secant tangent up to rupture of the material. Results of flexural properties of laterite stone beam 

are presented in Table 1. 

 

Figure 7 : Variation of Flexural Strength with change in Moisture at test 
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Table 1 - Flexural Property of Laterite Stone Beam 

Flexural 

test 
Storage 

Water 

Content 

[%] 

Loading 

rate 

[µm/s] 

Max 

Load 

[N] 

Max 

Deflection, 

mm 

Flexural 

Strength, 

MPa 

Flexural 

Modulus, 

MPa 

D1 

100°C 

0 

5µm/s 

573.5 0.084 0.77 880 

D2 0 750 0.13 1.08 780 

average - - - - - 0.93 830 

N1 25°C, 

50% RH 

2.1% 

5µm/s 

333 0.089 0.49 800 

N2 2.0% 362 0.096 0.48 510 

average - 2.0% - - - 0.49 650 

W1 

25°C 

3.8% 

5µm/s 

310 0.17 0.47 230 

W2 4.2% 189 0.13 0.26 190 

average - 4.0% - - - 0.37 210 

4.2 Compressive Strength 

The compressive stress strain characteristics of the laterite specimen tested in unconfined 

compression test are shown in Figure 8. The compression test was carried out on 6 specimens, 2 

specimens each in ‘N’, ‘D’ & ‘W’ series. The average compressive strength of the laterite stone 

specimen exposed to ambient environment is found to be 2.4MPa, a detailed summary of 

compressive test results are given in                                             Table 2. Similar to earthen 

construction materials, compressive strength of the laterite stone decreases with increase in 

moisture content as shown in Figure 9. The average compressive strength of the laterite stone 

specimen with 4% moisture content is found to be 55% of its dry compressive strength.  
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Figure 9: Variation of Compressive Strength with Moisture 

Figure 8- Stress-Strain Graph of Compression Test 
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                                            Table 2- Results of Compression Test 

Compression 

Test 
Storage 

Water 

Content 

Compressive 

Strength, 

MPa 

Secant 

Modulus 

(Peak), MPa 

D1 

100°C 0 

2.5 2220 

D2 2.6 2150 

average - 0 2.6 2190 

N1 25°C 

& 

50% RH 

1.9% 2.1 2460 

N2 1.9% 2.7 2490 

average - 1.9% 2.4 2470 

W1 

25°C 

4.2% 1.4 2970 

W2 4.0% 1.4 2160 

average - 4.1% 1.4 2560 

4.3 Young’s modulus 

Cyclic loading is very helpful in understanding the elastic behaviour of the material, in 

this analysis to calculate the elastic modulus (secant), best fit linear line is drawn to each cycles 

(including 3 repetitions) as shown in Figure 10, where all the cycles are shown. The secant 

modulus of the first cycle is called as the initial secant modulus, which is low compared to cycles 

(2-5), this may be attributed to the closer of micro cracks in the material. Figure 11 shows the 

secant modulus of samples at various stages during loading. The variation of the secant modulus 

between cycles 2-5 is less and exhibits linearity. The average cyclic (2-5) secant modulus was 

found to be 2700MPa for both dry and ambient condition. In Figure 12, initial secant modulus, 

average of secant modulus of cycles 2, 3, 4 and 5 and secant modulus at peak are plotted against 

the variation of moisture. The behaviour of moist samples doesn’t provide convincing 

information.  The variation between initial secant modulus and secant modulus at peak is seen to 
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be negligible (less than 10%) at dry and ambient condition; this may suggest secant modulus at 

peak can be considered for analysis. It should also be noted that the secant modulus at dry and 

ambient condition doesn’t vary much, so the assumption of linear behaviour seems to be correct 

for this kind of material, if water content remains limited. 

 

Figure 10 : An Example of Elastic behaviour of Laterite Stone Specimen 
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Figure 11: Variation of Modulus at each cycle 

 

 

Figure 12: Change of secant modulus and average cyclic modulus with change in 

moisture 

4.4 Irreversible strain 

From cyclic loading it was observed that the material exhibits residual strain after reaching 

1.08kN load (cycle2). In the first cycle, material completely regains its straining showing perfect 

elasticity. From second cycle, when material is loaded to 1.08kN and above, material does not 

regain its original shape upon unloading. For calculating elastic strain (εe) recovery and plastic 

strain (εp), the last known strain upon unloading of each cycle is linearly extended on to the x-

axis as shown in Figure 13, the point of intersection on the x-axis is the plastic strain material has 
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undergone for that cycle. The maximum strain material has undergone for each cycle at its 

maximum stress is taken as εt. The ratio of plastic strain (εp) to total strain (εt) of each cycle is 

taken as the percentage of plasticity material has undergone for a cycle, the plastic property of 

laterite tested specimens are shown in Figure 14. Specimens D1 & W2 has wide spread plasticity, 

it was observed these specimens has prolonged straining before failure, whereas the other 

specimen showed brittle failure nature. Though it is difficult to quantify the plasticity of the 

material, in general it can be said that material shows less than 25% plasticity, this information 

adds value to the assumption of linear behaviour. The maximum stress and strain values of the 

laterite test specimens are given in Table 3. 

 

Figure 13: Graphical explanation for calculation of plasticity 
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Figure 14: Percentage of plasticity undergone by specimens with respect to cycles 

(load) 

Table 3: Failure Stress - Strain 

Laterite 

Specimen 

Moisture 

[%] 

stress at 

failure 

σ(max), 
MPa 

Strain at 

failure  

ε, 

 [10^-5] 

D1 0 2.5 160 

D2 0 2.6 120 

N1 1.9 2.1 90 

N2 1.9 2.7 110 

W1 4.2 1.4 50 

W2 4.0 1.4 90 

5 Discussion 

The first remarks can be made on the highly hygroscopic characteristics of the material. Sorption 

isotherms exhibit a strong hysteresis and between 20 to 40 kg/m
3 

water content in the middle 

range of relative humidities. In this study the laterite samples compared with rammed earth 

samples present higher hygroscopic water adsorption characteristics. The moisture buffering 
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results show the same trend with a dynamic adsorption at least twice the values of the rammed 

earth samples and comparable to those obtained for unfired clay bricks [43].  

The corresponding calculated MBV is 2.8 g/m².%RH for 75%/33% RH cycles. MBVs over 2 

g/m².%RH are considered as excellent moisture buffering materials. From these results it can be 

concluded that the material can have a positive impact on indoor air quality. Any exposed surface 

will act as a passive climate regulator. This potential has previously been described for other 

building materials [44]. It can however be discussed if such behaviour would also be effective in 

tropical climates where Laterite stones can usually be found. A study using simulation tools to 

access the influence of the building envelope on the interior climate in tropical climate conditions 

shows that the addition of hygroscopic materials lowers the interior RH peaks [45]. 

 

Figure 15: Variation of compressive strength of Laterite (different quarries) with 

moisture 

Compressive strength of porous material varies with change in moisture condition. 

Experimental results show that, the compressive strength of LBS reduces with increase in the 

moisture content. In Figure 15, the compressive strength at different moisture state of laterite 

blocks from Dano, Burkina Faso [24] and Malabar region, India [22] are presented along with the 

LBS (Toussiana) experimental results obtained from this study. Ulikkal (I-UL), 

Panayathamparamba (I-PTA), Muchukunnu (I-MU) and Perinkulam (I-PM) are different quarries 

of laterite blocks in Malabar region, India [22,26]. Wet compressive strength of laterite blocks 
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from Malabar region in between 25%-54% of its dry compressive strength, the variation in 

compressive strength depends on the quarry and composition of rock [46]. The dry, ambient and 

saturated compressive strength of laterite blocks from Dano, Burkina Faso [24] are shown in 

Figure 15, it has to be noted that, the aspect ratio [28] of the test specimens in this case were less 

than 2, hence compressive strength of laterite blocks from Dano, Burkina Faso might require 

coefficient of correction. The ambient compressive strength of laterite block (Dano) is 50% of its 

dry state, whereas the tested material from Toussiana losses only 7% of its dry compressive 

strength at ambient condition. In both cases, moisture at ambient condition is around 2%.  Wet 

compressive strength of laterite blocks (Dano) is 45% of its dry compressive strength. In general, 

it can be said that the wet or saturated compressive strength of laterite stones is 40%-50% of its 

dry compressive strength.  

 

Figure 16: Comparison of compressive strength of Laterite, Rammed earth, CEB at 

dry state. 

Compressive strength of a building material is one of the decisive factors in 

recommending its suitability as an alternative construction material. In this analysis for 

comparison, stabilised compressed earth block (CEB) [7,28,47,48], cement stabilised rammed 

earth (CSRE) [49], lime stabilised rammed earth (LSRE)[15], and unstabilised rammed earth 

(USRE) [29] are considered. The dry and wet compressive strength of the materials are 
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considered and plotted as shown in Figure 16 & Figure 17. The dry compressive strength of the 

rammed earth varies between 1-5MPa, the compressive strength of the USRE being the lowest, 

with increase in the percentage of cement and lime content there is increase in strength. Similarly 

compressive strength of stabilized CEB varies between 2-8MPa, depending upon the percentage 

of cement and clay in the soil[47]. In the case of laterite, dry compressive strength varies from 

2.5-8.3MPa depending on the quarry and its chemical and mineral composition, the material 

tested in this study exhibits 2.6MPa as the average dry compressive strength.  

In general wet compressive strength of stabilised rammed earth and stabilised CEB losses 

50% of its dry compressive strength, similar to the case of LBS. As shown in Figure 17, wet 

compressive strength of rammed earth is in between of 0.5-2.3MPa, and that of CEB is in 

between 1.2-3.2MPa. It is interesting to see that the wet compressive strength of laterite also 

varies in the range of 1.4-3.2MPa, the material tested in this study has an average wet 

compressive strength of 1.4MPa.  

This shows that the dry & wet compressive strength of LBS is similar to stabilized earth 

materials. According to [19] the induration process of laterite soils involves the crystallisation of 

iron oxide minerals cementing the aggregates over a more or less long period of time. A further 

physico-chemical study of the nature of this induration may allow its comparison and potentially 

replicate the process to the stabilisation of earth materials. Compared to the stabilisation of earth 

materials the natural induration of laterite soils has no environmental impact yet the use of laterite 

stones involves extraction and transport from the quarry to the building site and therefore 

increasing its environmental impact compared to unfired earth. It is interesting to note that the 

mechanical characteristic of laterite varies with quarry, region, and nature of deposits. The 

variation of strength with quarries might be attributed to change in the chemical and mineral 

composition during induration process, to understand how laterite stone gains its strength, a detail 

mineral and chemical analysis has to be carried out.  
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Figure 17: Comparison of compressive strength of Laterite, Rammed earth, & CEB 

at saturated / wet state. 

6 Conclusion 

In this study, LBS from Toussiana, Burkina Faso is studied for its hygroscopic and mechanical 

parameters. From sorption isotherm hysteresis and dynamic adsorption tests, laterite exhibits 

strong hygroscopic characteristics with MBV of 2.8g/m².%R.H, which is better than the SRE & 

USRE.  It was also observed that the flexural strength and compressive strength of the LBS 

decreases with increase in moisture content, the flexural and compressive strength of the LBS at 

ambient conditions was found to be 0.55MPa and 2.4MPa respectively. Though the strength 

decreasing tendency is found with moisture, there is need for more experimental investigation to 

propose correlation of strength with moisture variation. Young’s modulus of the specimens at 

ambient condition was found to be 2600 from cyclic loading, with plasticity of 20%. It was also 

seen that that the mechanical properties of LBS varies with quarry and region, hence it is highly 

recommended to study mechanical properties of laterite from each quarry. Further studies on 

chemical and mineral analysis of laterite would provide comprehensive analysis of LBS. The dry 

and wet compressive strength of laterite is on par with the stabilised earth construction materials, 

yet it exhibits a strong buffering capacity. In the light of this research laterite stone block as an 

eco-friendly and low cost building material seems to be a valid alternative solution. Furthermore, 

the natural induration that occurs during its formation could prove through further investigation 
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to be a stabilisation solution for earth materials. This could widen the research on eco-friendly 

soil stabilisers used for stabilising earthen building materials.  
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