716 research outputs found

    Mesoscale dynamics on the Sun's surface from HINODE observations

    Full text link
    Aims: The interactions of velocity scales on the Sun's surface, from granulation to supergranulation are still not understood, nor are their interaction with magnetic fields. We thus aim at giving a better description of dynamics in the mesoscale range which lies between the two scales mentioned above. Method: We analyse a 48h high-resolution time sequence of the quiet Sun photosphere at the disk center obtained with the Solar Optical Telescope onboard Hinode. The observations, which have a field of view of 100 \arcsec×\times 100 \arcsec, typically contain four supergranules. We monitor in detail the motion and evolution of granules as well as those of the radial magnetic field. Results: This analysis allows us to better characterize Trees of Fragmenting Granules issued from repeated fragmentation of granules, especially their lifetime statistics. Using floating corks advected by measured velocity fields, we show their crucial role in the advection of the magnetic field and in the build up of the network. Finally, thanks to the long duration of the time series, we estimate that the turbulent diffusion coefficient induced by horizontal motion is approximately 430km2s−1430 \mathrm{km}^2 \mathrm{s}^{-1}. Conclusions: These results demonstrate that the long living families contribute to the formation of the magnetic network and suggest that supergranulation could be an emergent length scale building up as small magnetic elements are advected and concentrated by TFG flows. Our estimate for the magnetic diffusion associated with this horizontal motion might provide a useful input for mean-field dynamo models.Comment: to appear in A&A - 8 pages, 13 figures (degraded quality) - Full resolution version available @ http://www.ast.obs-mip.fr/users/rincon/hinode_roudier_aa09.pd

    Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode)

    Full text link
    Twisting motions of different nature are observed in several layers of the solar atmosphere. Chromospheric sunspot whorls and rotation of sunspots or even higher up in the lower corona sigmoids are examples of the large scale twisted topology of many solar features. Nevertheless, their occurrence at large scale in the quiet photosphere has not been investigated. The present study reveals the existence of vortex flows located at the supergranular junctions of the quiet Sun. We use a 1-hour and a 5-hour time series of the granulation in Blue continuum and G-band images from FG/SOT to derive the photospheric flows. A feature tracking technique called Balltracking is performed to track the granules and reveal the underlying flow fields. In both time series we identify long-lasting vortex flow located at supergranular junctions. The first vortex flow lasts at least 1 hour and is ~20-arcsec-wide (~15.5 Mm). The second vortex flow lasts more than 2 hours and is ~27-arcsec-wide (~21 Mm).Comment: 4 pages, 10 figure

    Balltracking: an highly efficient method for tracking flow fields

    Get PDF
    We present a method for tracking solar photospheric flows that is highly efficient, and demonstrate it using high resolution MDI continuum images. The method involves making a surface from the photospheric granulation data, and allowing many small floating tracers or balls to be moved around by the evolving granulation pattern. The results are tested against synthesised granulation with known flow fields and compared to the results produced by Local Correlation tracking (LCT). The results from this new method have similar accuracy to those produced by LCT. We also investigate the maximum spatial and temporal resolution of the velocity field that it is possible to extract, based on the statistical properties of the granulation data. We conclude that both methods produce results that are close to the maximum resolution possible from granulation data. The code runs very significantly faster than our similarly optimised LCT code, making real time applications on large data sets possible. The tracking method is not limited to photospheric flows, and will also work on any velocity field where there are visible moving features of known scale length

    Power spectra of velocities and magnetic fields on the solar surface and their dependence on the unsigned magnetic flux density

    Full text link
    We have performed power spectral analysis of surface temperatures, velocities, and magnetic fields, using spectro-polarimetric data taken with the Hinode Solar Optical Telescope. When we make power spectra in a field-of-view covering the super-granular scale, kinetic and thermal power spectra have a prominent peak at the granular scale while the magnetic power spectra have a broadly distributed power over various spatial scales with weak peaks at both the granular and supergranular scales. To study the power spectra separately in internetwork and network regions, power spectra are derived in small sub-regions extracted from the field-of-view. We examine slopes of the power spectra using power-law indices, and compare them with the unsigned magnetic flux density averaged in the sub-regions. The thermal and kinetic spectra are steeper than the magnetic ones at the sub-granular scale in the internetwork regions, and the power-law indices differ by about 2. The power-law indices of the magnetic power spectra are close to or smaller than -1 at that scale, which suggests the total magnetic energy mainly comes from either the granular scale magnetic structures or both the granular scale and smaller ones contributing evenly. The slopes of the thermal and kinetic power spectra become less steep with increasing unsigned flux density in the network regions. The power-law indices of all the thermal, kinetic, and magnetic power spectra become similar when the unsigned flux density is larger than 200 Mx cm^-2.Comment: 9 pages, 6 figures, accepted for publication in Ap

    A rigorous method for multigenic families' functional annotation: the peptidyl arginine deiminase (PADs) proteins family example

    Get PDF
    BACKGROUND: large scale and reliable proteins' functional annotation is a major challenge in modern biology. Phylogenetic analyses have been shown to be important for such tasks. However, up to now, phylogenetic annotation did not take into account expression data (i.e. ESTs, Microarrays, SAGE, ...). Therefore, integrating such data, like ESTs in phylogenetic annotation could be a major advance in post genomic analyses. We developed an approach enabling the combination of expression data and phylogenetic analysis. To illustrate our method, we used an example protein family, the peptidyl arginine deiminases (PADs), probably implied in Rheumatoid Arthritis. RESULTS: the analysis was performed as follows: we built a phylogeny of PAD proteins from the NCBI's NR protein database. We completed the phylogenetic reconstruction of PADs using an enlarged sequence database containing translations of ESTs contigs. We then extracted all corresponding expression data contained in EST database This analysis allowed us 1/To extend the spectrum of homologs-containing species and to improve the reconstruction of genes' evolutionary history. 2/To deduce an accurate gene expression pattern for each member of this protein family. 3/To show a correlation between paralogous sequences' evolution rate and pattern of tissular expression. CONCLUSION: coupling phylogenetic reconstruction and expression data is a promising way of analysis that could be applied to all multigenic families to investigate the relationship between molecular and transcriptional evolution and to improve functional annotation
    • 

    corecore