346 research outputs found

    The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment

    Get PDF
    Media-based bacteriological testing will fail to detect non-culturable organisms and the risk of consuming viable but non-culturable (VBNC) Listeria monocytogenes is unknown. We have here studied whether L. monocytogenes obtained from seafoods, processing environment and clinical cases enter the VBNC state and assessed the virulence of the non-culturable forms of the bacteria. A number of 16 L. monocytogenes strains were starved in microcosm water at 4 °C until loss of culturability. Metabolic activity in the VBNC form was measured as ATP generation using a luciferase assay and membrane integrity was examined using the LIVE/DEAD BacLight assay. All tested L. monocytogenes strains entered the VBNC state after starvation in microcosm water. Ongoing mRNA synthesis of hly in VBNC L. monocytogenes cells re-incubated in culture medium indicated a potential virulence of these forms. Sodium pyruvate and replenishment of nutrient were used in attempts to resuscitate VBNC cells. However, VBNC L. monocytogenes were not resuscitated under these conditions. VBNC L. monocytogenes were tested for virulence in a cell plaque assay and by intraperitoneally inoculation in immunodeficient RAG1−/− mice. Inoculation of VBNC L. monocytogenes in immunodeficient mice did not cause morbidity, and plaque assay on HT-29 cells in culture indicated that the VBNC cells were avirulent. The results indicate that the risk of non-culturable L. monocytogenes in foods, when the VBNC state is induced by starvation, is negligible

    Circumventricular Organs and Parasite Neurotropism: Neglected Gates to the Brain?

    Get PDF
    Circumventricular organs (CVOs), neural structures located around the third and fourth ventricles, harbor, similarly to the choroid plexus, vessels devoid of a blood-brain barrier (BBB). This enables them to sense immune-stimulatory molecules in the blood circulation, but may also increase chances of exposure to microbes. In spite of this, attacks to CVOs by microbes are rarely described. It is here highlighted that CVOs and choroid plexus can be infected by pathogens circulating in the bloodstream, providing a route for brain penetration, as shown by infections with the parasites Trypanosoma brucei. Immune responses elicited by pathogens or systemic infections in the choroid plexus and CVOs are briefly outlined. From the choroid plexus trypanosomes can seed into the ventricles and initiate accelerated infiltration of T cells and parasites in periventricular areas. The highly motile trypanosomes may also enter the brain parenchyma from the median eminence, a CVO located at the base of the third ventricle, by crossing the border into the BBB-protected hypothalamic arcuate nuclei. A gate may, thus, be provided for trypanosomes to move into brain areas connected to networks of regulation of circadian rhythms and sleep-wakefulness, to which other CVOs are also connected. Functional imbalances in these networks characterize human African trypanosomiasis, also called sleeping sickness. They are distinct from the sickness response to bacterial infections, but can occur in common neuropsychiatric diseases. Altogether the findings lead to the question: does the neglect in reporting microbe attacks to CVOs reflect lack of awareness in investigations or of gate-opening capability by microbes

    The ASCIZ-DYNLL1 axis promotes 53BP1-dependent non-homologous end joining and PARP inhibitor sensitivity

    Get PDF
    53BP1 controls a specialized non-homologous end joining (NHEJ) pathway that is essential for adaptive immunity, yet oncogenic in BRCA1 mutant cancers. Intra-chromosomal DNA double-strand break (DSB) joining events during immunoglobulin class switch recombination (CSR) require 53BP1. However, in BRCA1 mutant cells, 53BP1 blocks homologous recombination (HR) and promotes toxic NHEJ, resulting in genomic instability. Here, we identify the protein dimerization hub—DYNLL1—as an organizer of multimeric 53BP1 complexes. DYNLL1 binding stimulates 53BP1 oligomerization, and promotes 53BP1’s recruitment to, and interaction with, DSB-associated chromatin. Consequently, DYNLL1 regulates 53BP1-dependent NHEJ: CSR is compromised upon deletion of Dynll1 or its transcriptional regulator Asciz, or by mutation of DYNLL1 binding motifs in 53BP1; furthermore, Brca1 mutant cells and tumours are rendered resistant to poly-ADP ribose polymerase (PARP) inhibitor treatments upon deletion of Dynll1 or Asciz. Thus, our results reveal a mechanism that regulates 53BP1-dependent NHEJ and the therapeutic response of BRCA1-deficient cancers

    SOCS3 Expression by Thymic Stromal Cells Is Required for Normal T Cell Development

    Get PDF
    The suppressor of cytokine signaling 3 (SOCS3) is a major regulator of immune responses and inflammation as it negatively regulates cytokine signaling. Here, the role of SOCS3 in thymic T cell formation was studied in Socs3fl/fl Actin-creER mice (Δsocs3) with a tamoxifen inducible and ubiquitous Socs3 deficiency. Δsocs3 thymi showed a 90% loss of cellularity and altered cortico-medullary organization. Thymocyte differentiation and proliferation was impaired at the early double negative (CD4-CD8-) cell stage and apoptosis was increased during the double positive (CD4+CD8+) cell stage, resulting in the reduction of recent thymic emigrants in peripheral organs. Using bone marrow chimeras, transplanting thymic organoids and using mice deficient of SOCS3 in thymocytes we found that expression in thymic stromal cells rather than in thymocytes was critical for T cell development. We found that SOCS3 in thymic epithelial cells (TECs) binds to the E3 ubiquitin ligase TRIM 21 and that Trim21−/− mice showed increased thymic cellularity. Δsocs3 TECs showed alterations in the expression of genes involved in positive and negative selection and lympho-stromal interactions. SOCS3-dependent signal inhibition of the common gp130 subunit of the IL-6 receptor family was redundant for T cell formation. Together, SOCS3 expression in thymic stroma cells is critical for T cell development and for maintenance of thymus architecture.publishedVersio

    DHODH inhibition modulates glucose metabolism and circulating GDF15, and improves metabolic balance

    Get PDF
    Dihydroorotate dehydrogenase (DHODH) is essential for the de novo synthesis of pyrimidine ribonucleotides, and as such, its inhibitors have been long used to treat autoimmune diseases and are in clinical trials for cancer and viral infections. Interestingly, DHODH is located in the inner mitochondrial membrane and contributes to provide ubiquinol to the respiratory chain. Thus, DHODH provides the link between nucleotide metabolism and mitochondrial function. Here we show that pharmacological inhibition of DHODH reduces mitochondrial respiration, promotes glycolysis, and enhances GLUT4 translocation to the cytoplasmic membrane and that by activating tumor suppressor p53, increases the expression of GDF15, a cytokine that reduces appetite and prolongs lifespan. In addition, similar to the antidiabetic drug metformin, we observed that in db/db mice, DHODH inhibitors elevate levels of circulating GDF15 and reduce food intake. Further analysis using this model for obesity-induced diabetes revealed that DHODH inhibitors delay pancreatic ÎČ cell death and improve metabolic balance.publishedVersio

    The PARP inhibitor AZD2461 provides insights into the role of PARP3 inhibition for both synthetic lethality and tolerability with chemotherapy in preclinical models

    Get PDF
    The PARP inhibitor AZD2461 was developed as a next-generation agent following olaparib, the first PARP inhibitor approved for cancer therapy. In BRCA1-deficient mouse models, olaparib resistance predominantly involves overexpression of P-glycoprotein,so AZD2461 was developed as a poor substrate for drug transporters. Here we demonstrate the efficacy of this compound against olaparib-resistant tumors that overexpress P-glycoprotein. In addition, AZD2461 was better tolerated in combination with chemotherapy than olaparib in mice, which suggests that AZD2461 could have significant advantages over olaparib in the clinic. However, this superior toxicity profile did not extend to rats. Investigations of this difference revealed a differential PARP3 inhibitory activity for each compound and a higher level of PARP3 expression in bone marrow cells from mice as compared with rats and humans. Our findings have implications for the use of mouse models to assess bone marrow toxicity for DNA-damaging agents and inhibitors of the DNA damage response. Finally, structural modeling of the PARP3-active site with different PARP inhibitors also highlights the potential to develop compounds with different PARP family member specificity profiles for optimal antitumor activity and tolerability

    Bioluminescent Imaging of Trypanosoma brucei Shows Preferential Testis Dissemination Which May Hamper Drug Efficacy in Sleeping Sickness

    Get PDF
    Monitoring Trypanosoma spread using real-time imaging in vivo provides a fast method to evaluate parasite distribution especially in immunoprivileged locations. Here, we generated monomorphic and pleomorphic recombinant Trypanosoma brucei expressing the Renilla luciferase. In vitro luciferase activity measurements confirmed the uptake of the coelenterazine substrate by live parasites and light emission. We further validated the use of Renilla luciferase-tagged trypanosomes for real-time bioluminescent in vivo analysis. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. This is of importance when considering trypanocidal drug development, since parasites might be protected from many drugs by the blood-testis barrier. This hypothesis was supported by our final study of the efficacy of treatment with trypanocidal drugs in T. brucei-infected mice. We showed that parasites located in the testis, as compared to those located in the abdominal cavity, were not readily cleared by the drugs

    PARP inhibitors as P-glyoprotein substrates

    Get PDF
    The cytotoxicity of PARP inhibitors olaparib, veliparib, and CEP-8983 were investigated in two P-glycoprotein (P-gp) overexpressing drug-resistant cell models (IGROVCDDP and KB-8-5-11). IGROVCDDP and KB-8-5-11 were both resistant to olaparib and resistance was reversible with the P-gp inhibitors elacridar, zosuquidar, and valspodar. In contrast, the P-gp overexpressing models were not resistant to veliparib or CEP-8983. Olaparib and veliparib did not induce protein expression of P-gp in IGROVCDDP or KB-8-5-11 at doses that successfully inhibit PARP. Olaparib therefore appears to be a P-gp substrate. Veliparib and CEP-8983 do not appear to be substrates. Veliparib and CEP-8983 may therefore be more useful in combined chemotherapy regimens with P-gp substrates and may be active in platinum and taxane-resistant ovarian cancer
    • 

    corecore