7 research outputs found

    Estimating species relative abundances from museum records

    Get PDF
    Funding: C.F., U.B. and D.J.R. acknowledge COST Action ‘European Soil-Biology Data Warehouse for Soil Protection’ (EUdaphobase), CA18237, supported by COST (European Cooperation in Science and Technology). AEM thanks the Leverhulme Trust (RPG-2019-401). D.B.B. was supported by an NSF Postdoc Research Fellowship in Biology (NSF 000733206), S.M.R. was supported by an NSERC Discovery Grant Author Contributions, A.V.S. was supported by NSF 1755336, C.S.M was supported by NSF 1398620 and N.J.G was supported by NSF 2019470.1. Dated, geo-referenced museum specimens are a rich data source for reconstructing species' distribution and abundance patterns. However, museum records are potentially biased towards over-representation of rare species, and it is unclear whether museum records can be used to estimate relative abundance in the field. 2. We assembled 17 coupled field and museum datasets to quantitatively compare relative abundance estimates with the Dirichlet distribution. Collectively, these datasets comprise 73,039 museum records and 1,405,316 field observations of 2,240 species. 3. Although museum records of rare species overestimated relative abundance by 1-fold to over 100-fold (median study = 9.0), the relative abundance of species estimated from museum occurrence records was strongly correlated with relative abundance estimated from standardized field surveys (r2 range of 0.10-0.91, median study = 0.43). 4. These analyses provide a justification for estimating species relative abundance with carefully curated museum occurrence records, which may allow for the detection of temporal or spatial shifts in the rank ordering of common and rare species.Publisher PDFPeer reviewe

    Citizen scientists and university students monitor noise pollution in cities and protected areas with smartphones.

    No full text
    Noise pollution can cause increased stress, cognitive impairment and illness in humans and decreased fitness and altered behavior in wildlife. Maps of noise pollution are used to visualize the distribution of noise across a landscape. These maps are typically created by taking a relatively small number of sound measurements or simulated on the basis of theoretical models. However, smartphones with inexpensive sound measuring apps can be used to monitor noise and create dense maps of real-world noise measurements. Public concern with noise can make monitoring noise pollution with smartphones an engaging and educational citizen science activity. We demonstrate a method utilizing single-day citizen science noise mapping events and a university lab to collect noise data in urban environments and protected areas. Using this approach, we collected hundreds of noise measurements with participants that we used to create noise maps. We found this method was successful in engaging volunteers and students and producing usable noise data. The described methodology has potential applications for biological research, citizen science engagement, and teaching

    Estimating species relative abundances from museum records

    No full text
    Abstract Dated, geo‐referenced museum specimens are a rich data source for reconstructing species' distribution and abundance patterns. However, museum records are potentially biased towards over‐representation of rare species, and it is unclear whether museum records can be used to estimate relative abundance in the field. We assembled 17 coupled field and museum datasets to quantitatively compare relative abundance estimates with the Dirichlet distribution. Collectively, these datasets comprise 73,039 museum records and 1,405,316 field observations of 2,240 species. Although museum records of rare species overestimated relative abundance by 1‐fold to over 100‐fold (median study = 9.0), the relative abundance of species estimated from museum occurrence records was strongly correlated with relative abundance estimated from standardized field surveys (r2 range of 0.10–0.91, median study = 0.43). These analyses provide a justification for estimating species relative abundance with carefully curated museum occurrence records, which may allow for the detection of temporal or spatial shifts in the rank ordering of common and rare species

    Estimating species relative abundances from museum records

    No full text
    1. Dated, geo-referenced museum specimens are a rich data source for reconstructing species' distribution and abundance patterns. However, museum records are potentially biased towards over-representation of rare species, and it is unclear whether museum records can be used to estimate relative abundance in the field. 2. We assembled 17 coupled field and museum datasets to quantitatively compare relative abundance estimates with the Dirichlet distribution. Collectively, these datasets comprise 73,039 museum records and 1,405,316 field observations of 2,240 species. 3. Although museum records of rare species overestimated relative abundance by 1-fold to over 100-fold (median study = 9.0), the relative abundance of species estimated from museum occurrence records was strongly correlated with relative abundance estimated from standardized field surveys (r2 range of 0.10-0.91, median study = 0.43). 4. These analyses provide a justification for estimating species relative abundance with carefully curated museum occurrence records, which may allow for the detection of temporal or spatial shifts in the rank ordering of common and rare species

    Global COVID-19 lockdown highlights humans as both threats and custodians of the environment

    Get PDF
    The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness
    corecore