202 research outputs found

    Why Urban Parents Resist Involvement in Their Children’s Elementary Education

    Get PDF
    We examined the perceptions of teachers and parents about family involvement in urban schools. The study generated from several others that we have been conducting about teaching in high poverty, urban schools. Using focus groups, our purpose was to learn how we could better prepare teachers for urban schools. The data revealed that teachers are frustrated with a lack of parental involvement in literacy activities at home and at school. Parents, however, expressed distrust toward the local elementary school because they felt the faculty has been biased against African American and Latino children and their families. Consequently, the parents said they deliberately decided not to participate in school activities. Parents explained they would only work with teachers who respected and valued their children. Results of our study point to the importance of helping new teachers learn strategies for developing strong trusting relationships and effective communication strategies when working with urban families

    Interaction between the tRNA-Binding and C-Terminal Domains of Yeast Gcn2 Regulates Kinase Activity In Vivo

    Get PDF
    Citation: Lageix, S., Zhang, J. W., Rothenburg, S., & Hinnebusch, A. G. (2015). Interaction between the tRNA-Binding and C-Terminal Domains of Yeast Gcn2 Regulates Kinase Activity In Vivo. Plos Genetics, 11(2), 28. doi:10.1371/journal.pgen.1004991The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2 alpha. Gcn2 is activated in amino acid-deprived cells by binding of uncharged tRNA to the regulatory domain related to histidyl-tRNA synthetase, but the molecular mechanism of activation is unclear. We used a genetic approach to identify a key regulatory surface in Gcn2 that is proximal to the predicted active site of the HisRS domain and likely remodeled by tRNA binding. Mutations leading to amino acid substitutions on this surface were identified that activate Gcn2 at low levels of tRNA binding (Gcd(-) phenotype), while other substitutions block kinase activation (Gcn(-) phenotype), in some cases without altering tRNA binding by Gcn2 in vitro. Remarkably, the Gcn(-) substitutions increase affinity of the HisRS domain for the C-terminal domain (CTD), previously implicated as a kinase autoinhibitory segment, in a manner dampened by HisRS domain Gcd(-) substitutions and by amino acid starvation in vivo. Moreover, tRNA specifically antagonizes HisRS/CTD association in vitro. These findings support a model wherein HisRS-CTD interaction facilitates the autoinhibitory function of the CTD in nonstarvation conditions, with tRNA binding eliciting kinase activation by weakening HisRS-CTD association with attendant disruption of the autoinhibitory KD-CTD interaction

    Long Range Correlation in Granular Shear Flow II: Theoretical Implications

    Full text link
    Numerical simulations are used to test the kinetic theory constitutive relations of inertial granular shear flow. These predictions are shown to be accurate in the dilute regime, where only binary collisions are relevant, but underestimate the measured value in the dense regime, where force networks of size ξ\xi are present. The discrepancy in the dense regime is due to non-collisional forces that we measure directly in our simulations and arise from elastic deformations of the force networks. We model the non-collisional stress by summing over all paths that elastic waves travel through force networks. This results in an analytical theory that successfully predicts the stress tensor over the entire inertial regime without any adjustable parameters

    Stress-strain behavior and geometrical properties of packings of elongated particles

    Full text link
    We present a numerical analysis of the effect of particle elongation on the quasistatic behavior of sheared granular media by means of the Contact Dynamics method. The particle shapes are rounded-cap rectangles characterized by their elongation. The macroscopic and microstructural properties of several packings subjected to biaxial compression are analyzed as a function of particle elongation. We find that the shear strength is an increasing linear function of elongation. Performing an additive decomposition of the stress tensor based on a harmonic approximation of the angular dependence of branch vectors, contact normals and forces, we show that the increasing mobilization of friction force and the associated anisotropy are key effects of particle elongation. These effects are correlated with partial nematic ordering of the particles which tend to be oriented perpendicular to the major principal stress direction and form side-to-side contacts. However, the force transmission is found to be mainly guided by cap-to-side contacts, which represent the largest fraction of contacts for the most elongated particles. Another interesting finding is that, in contrast to shear strength, the solid fraction first increases with particle elongation, but declines as the particles become more elongated. It is also remarkable that the coordination number does not follow this trend so that the packings of more elongated particles are looser but more strongly connected.Comment: Submited to Physical Review

    Multiscale Analysis of the Stress State in a Granular Slope in Transition to Failure

    Full text link
    By means of contact dynamics simulations, we analyze the stress state in a granular bed slowly tilted towards its angle of repose. An increasingly large number of grains are overloaded in the sense that they are found to carry a stress ratio above the Coulomb yield threshold of the whole packing. Using this property, we introduce a coarse-graining length scale at which all stress ratios are below the packing yield threshold. We show that this length increases with the slope angle and jumps to a length comparable to the depth of the granular bed at an angle below the angle of repose. This transition coincides with the onset of dilatation in the packing. We map this transition into a percolation transition of the overloaded grains, and we argue that in the presence of long-range correlations above the transition angle, the granular slope is metastable.Comment: 11 pages, 14 Fig, submitted to PR

    Force transmission in a packing of pentagonal particles

    Get PDF
    We perform a detailed analysis of the contact force network in a dense confined packing of pentagonal particles simulated by means of the contact dynamics method. The effect of particle shape is evidenced by comparing the data from pentagon packing and from a packing with identical characteristics except for the circular shape of the particles. A counterintuitive finding of this work is that, under steady shearing, the pentagon packing develops a lower structural anisotropy than the disk packing. We show that this weakness is compensated by a higher force anisotropy, leading to enhanced shear strength of the pentagon packing. We revisit "strong" and "weak" force networks in the pentagon packing, but our simulation data provide also evidence for a large class of "very weak" forces carried mainly by vertex-to-edge contacts. The strong force chains are mostly composed of edge-to-edge contacts with a marked zig-zag aspect and a decreasing exponential probability distribution as in a disk packing

    Solid behavior of anisotropic rigid frictionless bead assemblies

    Get PDF
    We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid equal-sized beads, in the quasistatic limit, by numerical simulation. Three different loading paths are explored: triaxial compression, triaxial extension and simple shear. Generalizing recent results [1], we show that the material, despite rather strong finite sample size effects, is able to sustain a finite deviator stress in the macroscopic limit, along all three paths, without dilatancy. The shape of the yield surface is adequately described by a Lade-Duncan (rather than Mohr-Coulomb) criterion. While scalar state variables keep the same values as in isotropic systems, fabric and force anisotropies are each characterized by one parameter and are in one-to-one correspondence with principal stress ratio along all three loading paths.The anisotropy of the pair correlation function extends to a distance between bead surfaces on the order of 10% of the diameter. The tensor of elastic moduli is shown to possess a nearly singular, uniaxial structure related to stress anisotropy. Possible stress-strain relations in monotonic loading paths are also discussed

    Unilateral interactions in granular packings: A model for the anisotropy modulus

    Full text link
    Unilateral interparticle interactions have an effect on the elastic response of granular materials due to the opening and closing of contacts during quasi-static shear deformations. A simplified model is presented, for which constitutive relations can be derived. For biaxial deformations the elastic behavior in this model involves three independent elastic moduli: bulk, shear, and anisotropy modulus. The bulk and the shear modulus, when scaled by the contact density, are independent of the deformation. However, the magnitude of the anisotropy modulus is proportional to the ratio between shear and volumetric strain. Sufficiently far from the jamming transition, when corrections due to non-affine motion become weak, the theoretical predictions are qualitatively in agreement with simulation results.Comment: 6 pages, 5 figure

    Sensitivity of the stress response function to packing preparation

    Full text link
    A granular assembly composed of a collection of identical grains may pack under different microscopic configurations with microscopic features that are sensitive to the preparation history. A given configuration may also change in response to external actions such as compression, shearing etc. We show using a mechanical response function method developed experimentally and numerically, that the macroscopic stress profiles are strongly dependent on these preparation procedures. These results were obtained for both two and three dimensions. The method reveals that, under a given preparation history, the macroscopic symmetries of the granular material is affected and in most cases significant departures from isotropy should be observed. This suggests a new path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J. Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor
    corecore