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Abstract. The fabric of granular materials, as the underlying inter-
nal contact network through which the interparticle forces transmit the
stress, plays a key role in describing their elasticity, critical state, and
dilatancy, to name a few. Just as response envelopes have been devel-
oped by Gudehus back in 1979 to get an overall picture of constitutive
models and the nature of constitutive equations, herein, the evolution
of contact fabric in granular materials when subjected to strain probes
is explored through series of Discrete Element Method (DEM) simula-
tions. As the first study of its kind, and also due to the richness of the
observed responses, the scope of the study has been limited to isotropic
configurations. The contribution of contact loss, gain, and reorientation
mechanisms to the changes in the associated second order fabric tensor
has been investigated as the proportion of vertical to horizontal strain
changed during a strain probing procedure. Intriguingly, the evolution of
fabric with strain probes shows a strong asymmetry in compression and
extension, signalling an incrementally nonlinear relation between fab-
ric and strain increments, despite the incrementally linear elastic stress-
strain response. Such results suggest that the origins of the incrementally
nonlinear stress-strain responses often observed in later stages of devi-
atoric loading of granular materials can be potentially traced back to
characteristics of fabric evolution.

1 Introduction

The micromechanical study of granular materials encompasses the underlying
connections between the microscopic-particle scales and the various characteris-
tics at the macroscopic-continuum level with interparticle contacts as the main
focus. Micromechanical descriptions of stress [1,9,19,30,36] and strain [2,14],
and dilatancy in particular [4,15,16,35], show the important role that the inter-
nal contacts arrangement play in relating variables across the different scales.
Therefore, having a detailed understanding of contact evolution during mechani-
cal loading is essential in formulating micromechanics-based constitutive models
for granular materials [10,17,18,32,37].
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The internal contact configuration is often characterized by a second order
fabric tensor [22,31] describing: the principal directions of contacts, the aver-
age number of contacts per particle, or coordination number, and the fabric
anisotropy which quantifies the deviation of the fabric tensor from isotropy.

In fact, it is desirable to connect stress to strain through both coordina-
tion number and fabric anisotropy as worked out in [24,26] to arrive at so-
called stress-strain-fabric relations for different stages of loading. The embed-
ment of microstructural information can done through a statistical analysis of
the micromechanical expression for the average stress tensor [9,19,36], relating
interparticle contact forces to branch vectors that connect centroids of particles
in contact as given by Rothenburg and coworkers [29,30], and the more recent
studies on particle kinematics [13,15,23,34].

The question of how contact fabric evolves has been addressed in previous
studies, see [13] for a thorough review. In general, two classes of studies can
be recognized based on whether fabric evolution is related to stress [21] or to
strain [6,13,27,28] increments. More recent studies suggest that a combination
of stress and strain controls the evolution of fabric, with contact loss and gain
being related to forces and deformations, respectively [25].

Nonetheless, the previous literature mostly studies the fabric evolution under
simple conventional loading paths, such as in biaxial, triaxial, or isochoric tests.
As such, the generality of such studies is considerably limited, recalling that
the elasto-plastic response of granular materials is incremental in nature and
generally depends upon the direction of loading [7,8,20,33]. Such a direction
dependence, or incremental nonlinearity, is often studied via directional prob-
ing; a pioneer method also known as Gudehus envelope [11], where vertical and
horizontal stress (or strain) increments in varying ratios are applied to the gran-
ular assembly, while the magnitude of the applied loading increment is kept
constant [3,5].

The current study investigates the evolution of contact fabric in response to
directional strain probes. As a first step toward this topic, the direction depen-
dence of the fabric response is investigated herein for isotropic, two-dimensional
granular assemblies with different initial coordination numbers. Discrete Ele-
ment Method (DEM for short) simulations have been performed to measure
various contributions to the evolution of the fabric tensor due to the contact
loss, gain, and reorientation mechanisms. The results exhibit a strong incre-
mentally nonlinear evolution of fabric tensor, that is in stark contrast with the
accompanying elastic, linear stress-strain response. Such directional dependen-
cies of fabric response, serves as a precursor for an elasto-plastic stress-strain
response, normally reflected as the dependency of the stress response on the
direction of loading.

2 Micromechanics

The internal structure of the interparticle contact network, is often characterized
by a second-order fabric tensor F encompassing the density and the directional
distribution of contact as [12,22,31]:
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with Np being the number of particles (excluding rattlers, i.e. particles with
fewer than two contacts), C the set of all contacts, and nc the contact normal
vector at contact c.

The characteristics of the fabric tensor are herein studied in terms of two
prominent variables: the coordination number, Z, defined as the average number
of contacts per particle, and an anisotropy measure, A, both defined in terms of
the principal values F1 and F2 of the fabric tensor F :

Z =
2Nc

Np
= tr(F ) = F1 + F2, A = F1 − F2 (2)

where Nc is the total number of contacts. The commonly used fabric anisotropy,
see e.g. [30], is related to these two variable by 2A = ac Z.

The change in fabric tensor can be decomposed into additive contributions
from three mechanisms: contact gain, contact loss, and contact reorientation
[13,25], i.e.
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with the sets of lost and gained contacts denoted by ΔC
l and ΔC

g respectively,
while C

r is the set of persisting contacts.
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Fig. 1. Schematics of strain probe, stress response and fabric response.

As mentioned earlier, previous studies such as [13,25] have indeed provided
insights as to how the fabric tensor changes due to these mechanisms along sin-
gle monotonic loading (stress or strain) paths. The scope of the investigation is
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broadened here by exploring the evolution of the fabric tensor in response to dif-
ferent proportional loading paths through strain probes, as illustrated schemat-
ically in Fig. 1. As a first step towards the study of more complex anisotropic
systems, the current work is restricted to isotropic initial samples.

3 DEM Simulations

DEM simulations have been performed on two-dimensional square assemblies of
50,000 circular particles with uniformly distributed radii and a ratio of maximum
to minimum particle radii of rmax/rmin = 2. Similar linear contact stiffnesses
have been set for normal and tangential directions, kn = kt, with the relative
stiffness of kn/p0 = 5 × 103, where p0 is the initial confining pressure. The
interparticle friction has been set at μ = 0.5.

In order to also investigate the effect of the initial coordination number, six
initial samples, with varying coordination numbers, Z0, and void ratios, e0, were
prepared, as listed in Table 1. The sample preparation method has been care-
fully chosen to yield initially isotropic samples with the initial fabric anisotropy
remaining |ac0| ≤ 10−4. After stabilizing the sample under the initial confining
stress, strain probes with a magnitude of ||Δε|| =

√
Δε2yy + Δε2xx = 2 × 10−4

were applied to the samples.

Table 1. Coordination number Z0 and void ratio e0, after compaction, of the initial
samples.

Z0 4.53 4.21 4.10 3.87 3.76 3.68

e0 0.157 0.173 0.179 0.196 0.204 0.211

Figure 2 presents the stress and fabric incremental responses to the imposed
strain probes for the dense sample with initial coordination number of Z0 = 4.53.
Normal contact stiffness kn has been used as a scaling factor to render stresses
dimensionless.

While the common symmetry around α = 45◦, expected for an isotropic
material, is observed, it is clear that the fabric response is incrementally nonlin-
ear with respect to the strain increment as the symmetry breaks down around
α = 135◦, i.e. contact loss in pure extension does not match the contact gain in
pure compression.

The stress responses of samples to the strain probes of the same size are
shown in Fig. 3. To avoid overcrowding, only the final states of strain and stress
increments are plotted. Furthermore, the total strain was decomposed into elas-
tic and plastic parts by repeating probes with an artificially large interparticle
friction to suppress any sliding mechanism [26]. This showed that plastic defor-
mations were insignificant (<1%), hence the total strains can be considered as
elastic.
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Fig. 2. (a) Imposed strain probes, (b) stress responses, and (c) fabric responses. Results
for the dense sample with initial coordination number Z0 = 4.53. Some characteristic
probe directions are shown in colour for easy interpretation and clarity.

Fig. 3. Dimensionless stress responses to the strain probes with magnitude of ||Δε|| =
2 × 10−4 for samples with different (selected) initial coordination numbers Z0. Only
the final points of the stress response have been plotted. The dashed lines represent
elliptical fits that correspond to an incrementally linear stress response.

The contact configuration at the beginning and at the end of the strain
probes can be compared to compute the fabric change due contact loss, gain,
and reorientation mechanisms, ΔF l,ΔF g, and ΔF r, as defined in Eq. 3. While
not presented here, the results indicate that the principal directions of these
tensors are aligned with the horizontal and vertical directions. Therefore, the
properties of these tensors are reduced to the sum of, and difference between their
vertical and horizontal components (which are principal values). For generality,
the results are normalized to the strain probe magnitude ||Δε|| which presents
the rate of change with respect to strain increment:
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m = l, g, r for contact loss, gain, and reorientation

(4)

with the parameter ΔZ∗m in Eq. 4 denoting the rate of change in coordination
number due to each mechanism, while ΔA∗m is related to the associated rate of
change of fabric anisotropy. It should be noticed that the variable ΔA∗m in Eq. 4
is defined such that, depending on the direction of the maximum fabric change,
it can assume both positive and negative values. Figure 4 shows the variation of
ΔZ∗m and ΔA∗m with probe direction α for the probes presented in Fig. 3.

Fig. 4. Rate of change in contact fabric tensor due to (a) contact loss, (b) contact gain,
and (c) contact reorientation, as defined in Eq. 3 for strain probes shown in Fig. 3. The
square symbols show the sum of the vertical and horizontal (principal) components of
the tensors, and the circles show the difference between these two values, as defined in
Eq. 4.

The results in Fig. 4 indicate that the rate of contact loss in isotropic exten-
sion does not match the rate of contact gain in isotropic compression, which
leads to the asymmetry of fabric change around α = 135◦, as already observed
in Fig. 2(c). By definition, no coordination number change is associated with
contact reorientation, i.e. ΔZ∗r = 0. Moreover, the contribution of contact reori-
entation to fabric change remains negligible compared to contact loss and gain.
While no clear dependency on initial coordination number is observed for the
contact reorientation in Fig. 4(c), both variables ΔZ∗m and ΔA∗m for contact
gain and loss mechanisms exhibit an increase as initial coordination number Z0

increases, as shown in Fig. 4(a) and (b).
Furthermore, the results in Figs. 4(a) and (b) indicate that the maximum

change in fabric anisotropy parameter, ΔA∗m, does not occur for the directions
of pure shear, α = 135◦ and 315◦. Instead, the directions of these extrema are
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shifted slightly towards the extension half region of the probes, i.e. −45◦ <
α < 135◦. As such, it is concluded that the largest change in fabric anisotropy
occurs for a strain probe direction that involves a combination of deviatoric and
extension strain.

3.1 Analysis of DEM Results with Representation Theorem

Following the representation theorem for the functional dependence of a second-
order tensor on another second-order tensor in two-dimensional isotropic sys-
tems, the change in fabric due to each mechanism can be readily expressed as:

ΔF ∗m
ij = ψm

1 δij + ψm
2 Δε∗

ij , m = l, g, r (5)

where ψm
1 and ψm

2 are functions of the invariants of Δε∗ as well as the initial
coordination number, Z0. Assuming Fourier series expansion up to the second
order of the probe direction, the expression in Eq. 5 can be reformulated in terms
of ΔZ∗, ΔA∗, and the trigonometric functions:

ΔZ∗m = am
1 + am

2 (cos α + sin α) + am
3 cos α sinα

ΔA∗m = am
4 (cos α − sin α) + am

5 (cos2 α − sin2 α)
m =l, g, r

(6)

with the total changes given as the sum over the contributing mechanisms:

ΔZ∗ = − ΔZ∗l + ΔZ∗g = a1 + a2(cos α + sinα) + a3 cos α sin α

ΔA∗ = − ΔA∗l + ΔA∗g + ΔA∗r = a4(cos α − sinα) + a5(cos2 α − sin2 α)

ai = − al
i + ag

i + ar
i

(7)

The results in Fig. 5 verify the accuracy of the expressions in Eq. 6 in fitting
the variation of ΔZ∗m and ΔA∗m with strain probe direction α for the sample
with initial coordination number of Z0 = 4.10. Only a single coefficient, Er, with
the relatively constant value of 2.7, is required to represent the variation of fabric
tensor due contact reorientation ΔF r

ij , since no coordination number change is
associated with contact reorientation, and the variation of ΔA∗r is accurately
fitted with the first-order harmonic term, as demonstrated in Fig. 5(c).

By definition, incremental linearity for fabric evolution is obtained where a
symmetry around α = 135◦ is observed, i.e. ΔF (α) = −ΔF (−α). Therefore,
based on the expressions in Eq. 6, an incrementally linear fabric response is
obtained whenever all the following conditions are met:

1. The rate of change in coordination number due to contact loss in isotropic
extension is equal to the rate of change in coordination number due to contact
gain in isotropic compression.

2. The rates of change in coordination number due to contact loss and contact
gain are equal in pure shear.

3. The maximum rate of change of anisotropy is obtained in pure shear.
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Fig. 5. Accuracy of the expressions in Eq. 6 in representing fabric change due to contact
loss (left), contact gain (middle), and contact reorientation (right), for the sample with
initial coordination number Z0 = 4.10.

It is clear from the results in Fig. 4 that none of the above three conditions
is satisfied, with the deviation from the first condition being the largest. The
observed incrementally nonlinear evolution of fabric is particularly intriguing
remembering that it occurs in a predominantly elastic deformation regime.

A more quantitative assessment of the incremental nonlinearity of fabric evo-
lution is presented in Fig. 6 where the variation of coefficients in Eq. 7 with initial
coordination number is given. Following the three above-mentioned requirements
for incremental nonlinearity, the non-zero variables a1, a3, and a5 point towards
an incrementally nonlinear evolution of fabric with strain increments. Moreover,
based on Eq. 7, the fact that a5 < a3 indicates that the deviation from incre-
mental linearity is more significant for the deviatoric part of fabric tensor, ΔA∗

compared to its spherical part, ΔZ∗. It is also important to notice that the
changes in fabric scale with initial coordination number as suggested by the
relatively linear trends in Fig. 6.

Fig. 6. Variation of coefficients describing the total fabric change in Eq. 7 with initial
coordination number Z0.
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Such a dependency on the direction of loading further is consistent with the
directional dependency of plastic flow rule [33] and constitutive models embed-
ding such incremental nonlinearity [7,8,20].

4 Conclusions

Two-dimensional DEM simulations of initially isotropic systems have been per-
formed to study the stress and fabric responses of granular media to strain prob-
ing. While the stress response remains incrementally linear and elastic, intrigu-
ingly, the fabric changes exhibit strong dependence on the strain probe direction,
and hence incremental nonlinearity. Such an incrementally nonlinear evolution
of the fabric response can only develop further to serve as a precursor to the
elasto-plasticity of anisotropic granular assemblies.

To further explore the nature of fabric changes, the contributions of each of
contact gain, loss, and reorientation mechanisms have been separately studied.
As intuitively expected, the contribution of contact loss and gain are seen to be
dominant in extensional and compressive probes, respectively. The contribution
of contact reorientation is consistently negligible compared to the other two
components.

As the main conclusions, the following qualitative observations have been
made regarding the nature of fabric evolution:

1. In isotropic compression the rate of change in coordination number due to
contact loss is very small, while the isotropic extension contact gain is very
small.

2. The rate of change in anisotropy is not largest in pure shear, but in a probe
direction that involves shear and extension.

3. The rate of contact loss in isotropic extension is larger than the rate of contact
gain in isotropic compression. It is this difference that ultimately forms the
primary origin of the incremental nonlinearity of fabric response to strain
probing.

4. The parameters expressing the rate of change in the above-mentioned char-
acteristic directions scale almost linearly with initial coordination number of
the samples.

The results indicate that further studies, with wider ranges of conditions, are
required to clearly explain the evolution of contact fabric and its role in driving
the mechanical response of granular materials, especially in three-dimensional
conditions. It will especially be interesting to study the fabric evolution in ini-
tially anisotropic configurations, for which, interrelations are expected between
lost and gained contacts distributions, as our preliminary results show.

Finally, the observations in this study show that, as it stands, the issue of
‘microstructure-motivated’ elasticity is an open question, with more detailed
investigations required to delineate the relation between fabric evolution and
stress-strain response.
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